
TE
AM
FL
Y

Team-Fly®

Page i

Fundamentals of OOP and Data Structures in Java

Fundamentals of OOP and Data Structures in Java is a text for an introductory course on classical data structures. Part
One of the book presents the basic principles of Object-Oriented Programming (OOP) and Graphical User Interface
(GUI) programming with Java. Part Two introduces each of the major data structures with supporting GUI-based
laboratory programs designed to reinforce the basic concepts and principles of the text. These laboratories allow the
reader to explore and experiment with the properties of each data structure. All source code for the laboratories is
available on the Web.

By integrating the principles of OOP and GUI programming, this book takes the unique path of presenting the
fundamental issues of data structures within the context of paradigms that are essential to today's professional software
developer. From the very beginning, undergraduate students will be learning practical concepts that every professional
must master during his or her career. In fact, professionals will find this book to be an excellent resource for upgrading
their knowledge of OOP, GUI programming and classical data structures. The authors assume the reader has only an
elementary understanding of Java and no experience with OOP.

Richard Wiener is Associate Professor of Computer Science at the University of Colorado at Colorado Springs and
Editor-in-Chief of The Journal of Object-Oriented Programming . He is the author or co-author of twenty-one textbooks
and professional books. In 1983 Richard Wiener received the Outstanding Teacher of the Year Award from the
University of Colorado at Colorado Springs. His areas of research include object-oriented software development,
simulated annealing and genetic algorithms, time series, and applied statistics.

Lewis J. Pinson is President of CIC and Associate Professor of Computer Science at the University of Colorado at
Colorado Springs. His areas of expertise include computer software development, object-oriented problem solving,
genetic algorithms, and complexity studies. He develops and presents training courses and intensive short courses and
workshops on object-oriented problem solving and object-oriented languages. Dr. Pinson has authored or co-authored
eight books.

Page iii

Fundamentals of OOP and Data Structures in Java

Richard Wiener

University of Colorado, Colorado Springs

Lewis J. Pinson

University of Colorado, Colorado Springs

Page iv

PUBLISHED BY CAMBRIDGE UNIVERSITY PRESS (VIRTUAL PUBLISHING) FOR AND ON BEHALF OF THE PRESS SYNDICATE OF THE UNIVERSITY OF
CAMBRIDGE

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain

© Cambridge University Press 2000
This edition © Cambridge University Press (Virtual Publishing) 2001

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing
agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000

Printed in the United States of America

Typeface Century Schoolbook 10/12.5 pt. and ITC Franklin Gothic System [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Wiener, Richard, 1941–
Fundamentals of OOP and data structures in Java/Richard Wiener, Lewis Pinson.
p. cm.
ISBN 0-521-66220 -6 (hb)
1. Java (Computer program language) 2. Object-oriented programming (Computer
science) 3. Data structures (Computer science) I. Pinson, Lewis J. II. Title.
QA76.73.J38 W53 2000
005.1'17 – dc21
 99-087328

ISBN 0 521 66220 6 hardback
eISBN 0-511-00168 -1 virtual (netLibrary Edition)

Page v

To my children Henrik and Anna and my wife Hanne
who provide joy and love in my life.
r.w.

For Aspen. From the first moment she opened her
eyes, she captured my heart and added new meaning
to my life.
l.j.p.

Page vii

CONTENTS

Preface page xiii

Part One: Foundations

1
Cornerstones of OOP

3

1.1 Data Abstraction 4

1.2 Encapsulation 5

1.3 Object 5

1.4 Message 6

1.5 Method 6

1.6 Class 7

1.7 Inheritance 8

1.8 Late Binding Polymorphism 13

1.9 Abstract Classes 13

1.10 Interface 17

1.11 Delegation 19

1.12 Generic Classes and Interfaces 19

1.13 Summary 20

1.14 Exercises 21

2
Objects

22

2.1 Reference Semantics and Creating Objects 22

2.2 Assigning, Aliasing, and Cloning Objects 23

2.3 Equality Testing 30

2.4 Scalar Versus Reference Types 31

2.5 Scalar Types and Their Wrappers 31

2.6 Wrapping and Unwrapping – Conversion from Object to Scalar and Scalar to
Object

32

2.7 Strings 34

2.8 Class StringBuffer 36

2.9 Arrays 36

2.10 Vector 40

2.11 Enumeration 44

2.12 Summary 48

2.13 Exercises 49

Page viii

3
Class Construction

51

3.1 Responsibilities between a Class and Its Users – Design by Contract 51

3.2 Organization of a Class 55

3.3 Packages 56

3.4 Access Modifiers 60

3.5 Naming Conventions 61

3.6 Summary 62

3.7 Exercises 63

4
Relationships between Classes

64

4.1 Inheritance 64

4.2 Composition 65

4.3 Class Relationships in Action – A Case Study 66

4.4 Summary 75

4.5 Exercises 76

5
GUIs: Basic Concepts

77

5.1 The Graphical Part of a GUI Application 77

5.2 Events – Making Communication Work 82

5.3 The MVC Design Pattern 89

5.4 Summary 94

6
Implementing Simple GUIs in Java

95

6.1 Containers and Essential Components – Building a GUI 95

6.2 Implementation of Event Handling in Java 99

6.3 Implementing MVC in Java 108

6.4 Summary 115

6.5 Exercises 115

7
Errors and Exceptions

119

7.1 Classification of Errors and Exceptions 120

7.2 Advertising Exceptions 121

7.3 Throwing an Exception 124

7.4 Creating Exception Classes 125

7.5 Handling Exceptions 126

7.6 The finally Clause 127

7.7 Putting It All Together – An Example 127

7.8 Catching Runtime Exceptions – An Example 131

7.9 Summary 133

7.10 Exercises 133

Page ix

8
Recursion

135

8.1 Properties for a Well-Behaved Recursion 136

8.2 Iteration Versus Recursion 138

8.3 Relative Complexity of a Recursion 142

8.4 Examples of Single and Double Recursion 145

8.5 Summary 152

8.6 Exercises 152

Part Two: Data Structures

9
Abstract Data Types

157

9.1 Counter ADT 158

9.2 General Properties of the Fraction ADT 160

9.3 Requirements for Class Fraction 160

9.4 Implementation Details for Selected Methods in Class Fraction 163

9.5 Building a Fraction Laboratory to Test Class Fraction 166

9.6 Documentation for Fraction – Generated by javadoc 168

9.7 Summary 168

9.8 Exercises 169

10
Containers as Abstract Data Types

170

10.1 The Container Hierarchy – Top Level 171

10.2 The Simplest Containers – Stack and Queue 173

10.3 Supporting Interface and Classes 175

10.4 The Container Hierarchy 178

10.5 UML Description of Container Hierarchy 192

10.6 Summary 194

10.7 Exercises 194

11
Stack and Queue

197

11.1 The Stack 197

11.2 ArrayStack 198

11.3 LinkedStack 201

11.4 Comparing the Efficiency of ArrayStack with LinkedStack 205

11.5 Queue 207

11.6 LinkedQueue 208

11.7 Stack/Queue Laboratory 210

11.8 Summary 211

11.9 Exercises 212

TE
AM
FL
Y

Team-Fly®

Page x

12
Application of Stack

214

12.1 Algebraic Expression Evaluation 214

12.2 Algorithm for Converting from Infix to Postfix Representation 216

12.3 Implementation of Algebraic Function Evaluation 218

12.4 Function Evaluation Laboratory 225

12.5 Summary 225

12.6 Exercises 226

13
Lists

227

13.1 Dequeue – An Implementation of List 227

13.2 Positionable List 240

13.3 Vector List 249

13.4 Ordered List 252

13.5 List Laboratory 256

13.6 Stack and Queue Revisited 258

13.7 Summary 259

13.8 Exercises 260

14
Trees, Heaps, and Priority Queues

263

14.1 Trees 263

14.2 Heaps 283

14.3 Priority Queues 300

14.4 Summary 312

14.5 Exercises 313

15
Search Trees

315

15.1 Review of Search Table Abstraction 315

15.2 Binary Search Tree 316

15.3 Searching for an Element in a Search Tree 317

15.4 Balance of Search Tree 318

15.5 Adding an Element to a Binary Search Tree 320

15.6 Removing an Element in a Binary Search Tree 320

15.7 Method add for Binary Search Tree 322

15.8 Method remove for Binary Search Tree 323

15.9 Performance of Binary Search Tree 330

15.10 AVL Tree 330

15.11 Tree Rotation 331

15.12 AVL add 333

15.13 AVL Deletion 340

15.14 Splay Tree 342

15.15 Implementation of Class SplayTree 344

15.16 Skip List 348

Page xi

15.17 Implementation of Skip List 349

15.18 Putting It All Together 356

15.19 Reusable Class DrawTree 359

15.20 Summary 364

15.21 Exercises 364

16
Hashing and Sets

367

16.1 Hashing and Collision Resolution 367

16.2 Bit Operations 369

16.3 Perfect Hash Function 371

16.4 Collisions 373

16.5 Class Hashtable 375

16.6 Collision Resolution 378

16.7 Set 386

16.8 Summary 392

16.9 Exercises 393

17
Association and Dictionary

395

17.1 The Association Abstract Data Type 395

17.2 The Dictionary Interface 399

17.3 Implementing the Dictionary Interface 402

17.4 The Dictionary Laboratory 413

17.5 The OrderedDictionary Interface 415

17.6 Implementing the OrderedDictionary Interface 418

17.7 The Ordered Dictionary Laboratory 422

17.8 Summary 424

17.9 Exercises 424

18
Sorting

427

18.1 Simple and Inefficient Sorting Algorithms 427

18.2 Efficient Sorting Algorithms 430

18.3 Binary Search 434

18.4 Sort Laboratory 434

18.5 Summary 435

18.6 Exercises 435

Appendix A
Unified Modeling Language Notation

437

A.1 Representing Classes in UML 437

A.2 Representing Relationships among Classes in UML 439

A.3 Representing Packages in UML 441

A.4 Representing Objects in UML 442

A.5 Representing Interactions among Objects in UML 442

Page xii

Appendix B
Complexity of Algorithms

445

Appendix C
Installing and Using Foundations Classes

450

C.1 Installing the Foundations Classes 450

C.2 Using foundations.jar with the Java 2 Platform 450

C.3 Using foundations.jar with JBuilder 452

Index 455

Page xiii

PREFACE

This is a CS 2 book that presents classical data structures in an object-oriented programming (OOP) context using Java.
This book also focuses on the basic principles of OOP and graphical user interface (GUI)-based programming – two
paradigms essential for modern programming and problem solving. Our book is aimed principally at CS 2 students but
may also be valuable to software development professionals who wish to upgrade their skills in the areas of OOP, GUI
programming, and classical data structures.

The software development principles associated with OOP provide a strong framework for presenting and implementing
classical data structures. We adhere to and emphasize these principles throughout this book.

Universities have been slow to introduce courses related to OOP into their curricula. Curriculum change has always
occurred slowly at universities, but the past dozen years have been particularly disappointing in the area of OOP
education. Often a department assumes that because it has switched language from Pascal or C to C++ or Java in CS 1 or
CS 2 that it has made a commitment to object-oriented software education. This is simply not true. Object orientation
embodies a set of principles often obscured by the intensive preoccupation with language details often evident in early
university courses and the books that cater to these courses. The spate of CS 1 and CS 2 books featuring C++ or Java are
often nothing more than warmed-over reruns of structured programming texts written originally for Pascal or C.

The principles of OOP and classical data structures are language independent. Our experience has shown that these
principles need to be brought to life using well-crafted examples supported by a rich object-oriented programming
language. In our view, Java fits this bill. It provides constructs and predefined standard libraries that directly support and
connect to the rich body of underlying OOP and data structure principles. We have chosen Java because its usage is
rising rapidly, it provides relative safety in programming, it is readily and inexpensively available (free in many cases),
and it offers the user a clean and powerful object model. But make no mistake – this is not yet another book on Java
programming. So what do we wish to achieve?

Part One of this book presents the basic principles of OOP and GUI programming. These principles are brought to life
using examples crafted in Java. The principles and techniques presented in Part One of the book are carefully chosen to
support Part Two of the book.

Page xiv

Part Two, the main part of the book, presents classical data structures. As the chapters of this part unfold, a Java -based
package (package foundations) of data structure components evolves. Most of the source code for this package is
available to the reader except in areas where, through exercises, the reader is expected to complete or enhance some data
structure classes.

In Part Two, each of the major data structure presentations are supported by laboratories designed to support and
reinforce the basic concepts and principles. Some of the laboratory programs allow the reader to extend his or her
knowledge by adding additional features to a data structure class. The full Java source code for all laboratory programs
is provided in a zip file, available for download at http://www.cup.org/Titles/66/0521662206.htm. These files also
include the source code for all major programs presented in the book.

Some specific goals of this book are to:

• Present foundation concepts and principles of object-oriented programming: abstraction, encapsulation, object, class,
instance, message, method, inheritance, polymorphism, abstract class, interface, and delegation.

• Present and illustrate subtleties of using objects: reference semantics, object creation, assignment, and cloning.

• Show how fundamental data elements including strings, arrays, vectors, and numbers are represented as objects.
Explain details and subtleties of their representations and manipulation in Java.

• Present the conceptual framework underlying the construction of GUI-based programming: widgets, delegation/event
handling, and model-view-controller design.

• Present and illustrate GUI software development with Java: use of AWT, Swing classes, event handling, and model-
view-controller.

• Present a series of GUI-based interactive laboratories throughout Part Two of the book. These allow the reader to
experiment with, visualize, and reinforce the basic concepts. These shall be provided with full Java source code online.

• Present the principles of class construction and documentation: external features (creation methods, class methods,
commands, queries, and pre- and postconditions) and internal features (data and methods).

• Discuss the issues associated with error handling in Java.

• Present the important concept of collections. A hierarchy of collection interfaces is developed as a framework to
support the concrete data structure classes in Part Two.

• Present the classical data structures in the context of OOP as concrete collection classes. This is the main focus and aim
of the book.

We assume that the reader:

1. wishes to learn the fundamental principles of object-oriented software construction using Java

Page xv

2. has prior experience with the elementary and basic aspects of the Java programming language or will learn these from
basic programming books or language tutorials

3. has little or no experience with object-oriented programming

4. has not purchased this book as yet another book on Java programming

5. wishes to extend and reinforce Java programming skills with particular emphasis on GUI software development

6. wishes to see a GUI-based presentation of major programming examples and applications

7. desires a practical OOP-based presentation of data structures and their applications.

This book has evolved from a set of notes that has undergone several iterations based on class testing over a one-year
period. We are grateful to our students for their thoughtful corrective feedback. We assume full responsibility for any
errors or inaccuracies that remain. We thank our colleague Ben Nystuen for stimulating discussion and general support
throughout the development of the notes that provide the basis for this book. We welcome feedback and corrections
from you, the reader. You may provide these by sending e-mail to rswiener@acm.org or ljp@acm.org. We thank you in
advance for your constructive comments.

RICHARD WIENER AND LEWIS J. PINSON
COLORADO SPRINGS, COLORADO

Page 1

PART ONE—
FOUNDATIONS

Page 3

1—
Cornerstones of OOP

The principles and practices of object-oriented software construction have evolved since the 1960s. Object-oriented
programming (OOP) is preoccupied with the manipulation of software objects. OOP is a way of thinking about problem
solving and a method of software organization and construction.

The concepts and ideas associated with object-oriented programming originated in Norway in the 1960s. A
programming language called Simula developed by Christian Nygaard and his associates at the University of Oslo is
considered the first object-oriented language. This language inspired significant thinking and development work at
Xerox PARC (Palo Alto Research Center) in the 1970s that eventually led to the simple, rich, and powerful Smalltalk-80
programming language and environment (released in 1980). Smalltalk, perhaps more than any programming language
before or after it, laid the foundation for object-oriented thinking and software construction. Smalltalk is considered a
''pure" object-oriented language. Actions can be invoked only through objects or classes (a class can be considered an
object in Smalltalk). The simple idea of sending messages to objects and using this as the basis for software organization
is directly attributable to Smalltalk.

Seminal work on object-oriented programming was done in the mid-1980s in connection with the Eiffel language.
Bertrand Meyer in his classic book Object-Oriented Software Construction (Prentice-Hall, 1988; Second Edition, 1997)
set forth subtle principles associated with OOP that are still viable and alive today. The Eiffel programming language
embodies many of these important principles and, like Smalltalk, is considered a pure object-oriented language. Eiffel,
with its strong type checking (every object must have a type), is closer in structure to the languages that we use today
than to Smalltalk.

OOP was popularized by a hybrid language developed at AT&T Bell Labs in the early 1980s, namely C++. This
language evolved from the popular C language. C++ evolved rapidly during the late 1980s. Because of this rapid
evolution and the need to retain a C-like syntax and backward compatibility with C, the syntax of C++ has become
arcane and complex. The language continued to grow in complexity during the early 1990s before finally becoming
standardized and is today considered one of the most complex programming languages ever devised. It is a hybrid
language because one can invoke functions without classes or objects. In fact most C programs (C is not an object-
oriented language) will compile and run as is using a C++ compiler. The hybrid nature of C++ makes it even more
challenging

TE
AM
FL
Y

Team-Fly®

Page 4

to use since it allows a mixture of styles of software thinking and organization. In order to use C++ effectively as an
object-oriented language, the programmer must impose rigorous constraints and style guidelines. Even with such
discipline, the C-like nature of C++ allows programmers to work around basic OOP rules and principles such as
encapsulation by using casts and pointers. The preoccupation with pointers in C++ makes the language potentially
dangerous for large software projects because of the ever present specter of memory leakage (failure to de -allocate
storage for objects that are no longer needed).

The Java programming language invented in the mid 1990s at Sun Microsystems and popularized in the late 1990s may
be considered to be a third almost pure object-oriented language. Like Smalltalk and Eiffel, actions may be invoked only
on objects and classes (except for a limited number of predefined operators used with primitive types). Also like
Smalltalk and Eiffel and unlike C++, Java objects that are no longer needed are disposed of automatically using ''garbage
collection." The programmer is unburdened from having to devote time and effort to this important concern. It might be
argued that the presence of primitive types in Java makes the language impure from an OOP perspective. Although this
is strictly true, the basic nature and character of Java is that of a pure object-oriented language and we consider it such.

OOP got its popular start in Portland, Oregon in 1986 at the first Association for Computing Machinery (ACM)-
sponsored OOPSLA (object -oriented programming, systems, languages, and applications) conference. At that time the
first versions of C++ and Eiffel had recently been released. The three most highly developed languages that were
showcased at this first OOPSLA conference were Object Pascal, Objective-C, and Smalltalk. The first release of the
Java programming language was ten years away.

During the early days of object-oriented programming, attention was focused on the construction and development of
OOP languages. Associated with these newly emerging languages were problem-solving methodologies and notations to
support the software analysis and design processes. It was not until the late 1990s that standardization of the object-
oriented analysis and design notation occurred with the Unified Modeling Language (UML).

The early application areas of OOP were the construction of libraries to support graphical user interfaces (GUIs),
databases, and simulation. These application areas continue to provide fertile soil to support OOP development.

As we enter the twenty-first century, OOP has become widely accepted as a mainstream paradigm for problem solving
and software construction. Its use may be found in a large number of application areas including compiler construction,
operating system development, numerical software, data structures, communication and network software, as well as
many other application areas.

In the following sections we introduce some fundamental concepts of OOP. Many of these concepts are elaborated on in
later chapters of Part One.

1.1—
Data Abstraction

The oldest cornerstone of OOP is the concept of data abstraction. This concept pre -dates OOP.

Page 5

Data abstraction associates an underlying data type with a set of operations that may be performed on the data type. It is
not necessary for a user of the data type to know how the type is represented (i.e., how the information in the type is
stored) but only how the information can be manipulated. As an example, consider the notion of integer in a
programming language. An integer is defined by the operations that may be performed on it. These include the binary
operations of addition, subtraction, multiplication, and division as well as other well-known operations. A programmer
can use an integer type without any knowledge of how it is internally stored or represented inside of the computer
system. The internal representation is not accessible to the user.

Data abstraction derives its strength from the separation between the operations that may be performed on the
underlying data and the internal representation of these data. If the internal representation of the data should be changed,
as long as the operations on these data remain invariant, the software that uses the data remains unaffected.

1.2—
Encapsulation

The fusion of underlying data with a set of operations that define the data type is called encapsulation. The internal
representation of the data is encapsulated (hidden) but can be manipulated by the specified operations.

1.3—
Object

OOP is based on the notion of object. A software object represents an abstraction of some reality. This reality may be a
physical object but is more often an idea or concept that may be represented by an internal state. As an example consider
a bouncing ball. If we were simulating the motion of the bouncing ball with software we would model the ball as an
object and its dynamic state as its height above the surface on which it was bouncing. Here the software object
represents a physical object. As a more abstract example consider a cashier line at a supermarket. If we were to represent
the line as a software object, its internal state might be the number of customers waiting to check out. Associated with
the line would be a set of behavioral rules. For example, the first customer to arrive would be the first customer to be
served. The last customer to arrive would be the last to be served.

OOP is also based on the notion of sending messages to objects. Messages can modify or return information about the
internal state of an object. We can send a line object the message addCustomer. This causes the internal state of the line
to change. We can send a ball object the message currentHeight . This returns the ball's height above the surface.

The behavior of an object is codified in a class description. The object is said to be an instance of the class that describes
its behavior. The class description specifies the internal state of the object and defines the types of messages that may be
sent to all its instances. A class Queue might be defined to describe the behavior of line objects.

In a program an object is a program variable associated with a class type. The object encapsulates data. An object's
''value" or information content is given by its

Page 6

internal state. This internal state is defined in terms of one or more fields. Each field holds a portion of the information
content of the object. As indicated above, an object can receive messages that either change the internal state (i.e.,
change the value of one or more fields) or return information about the internal state of the object. These messages
represent the operations that may be performed on the object.

1.4—
Message

Messages are sent to or invoked on objects. In most object-oriented languages the syntax used to accomplish this is
given as follows:

someObject.someMessage

The object precedes the message since it is the recipient of the message. A ''dot" operator separates the object from the
message. Reading from left to right places the emphasis on the first entity, the object. A message may sometimes have
one or more parameters. For example,

line.addCustomer(joe)

Here the object line, an instance of class Queue , receives the message addCustomer with joe as a parameter. The object
joe is presumed to be an instance of class Customer . Since a Queue object needs to hold other objects, in this case
Customer objects, the method addCustomer must take a Customer object as a parameter.

Messages can be cascaded. Suppose we wish to determine the last name of the first customer in a line. The following
expression might be appropriate:

line.first.lastName

Here line is assumed to be an instance of class Queue . The message first returns a Customer object (the lead customer in
the Queue). The message lastName returns the last-name field of this lead customer. We are assuming that class Queue
has a method first that returns the lead customer. We are assuming that class Customer has a method lastName that
returns the last-name field.

1.5—
Method

A method is a function or procedure that defines the action associated with a message. It is given as part of a class
description. When a message is invoked on an object the details of the operation performed on the object are specified
by the corresponding method.

Page 7

1.6—
Class

A class describes the behavior of objects, its instances. The external or ''public" view of a class describes the messages
that may be sent to instances. Each possible message is defined by a method. These include messages that affect the
internal state of the object and messages that return information about this internal state. The internal or "private" view
of a class describes the fields that hold the information content of instances. In addition to fields, the private view of a
class may define private methods that are used to support public methods but cannot be invoked outside of the class.

The user of a class is concerned only with the public or external view of the class. The producer of a class is concerned
with the public and private view. Chapter 3 describes the construction of Java classes in detail.

Let us consider a simple example to illustrate some of the ideas presented above. Consider class Point. The "actions"
that one may take on a point object include:

1. setX(xValue)

2. setY(yValue)

3. x()

4. y()

5. distanceFromOrigin()

Note: We prefer to use a noun phrase rather than a verb phrase for a message that returns internal information about an
object. This is justified in Chapter 3.

The five external actions that have been defined for class Point are called accessor methods. They allow us to set and get
the values of the x and y coordinates of a point object and get the distance of the point to the origin. The first two
accessors, setX and setY, require a parameter.

Listing 1.1 presents a full Java class definition for Point.

Listing 1.1 Class Point

/** Details of class Point
*/
public class Point {

 // Fields
 private double x; // x coordinate
 private double y; // y coordinate
 private double distance; // length of point

 // Methods
 public void setX (double x) {
 this.x = x;
 updateDistance();
 }

Page 8

 public void setY (double y) {
 this.y = y;
 updateDistance();
 }

 public double x () {
 return x;
 }

 public double y () {
 return y;
 }

 public double distanceFromOrigin () {
 return distance;
 }

 // Internal methods
 private void updateDistance () {
 distance = Math.sqrt(x*x + y*y);
 }
}

As will be our practice throughout this book, class names and public features shall be presented in boldface type. This
highlights the external view of the class.

The three fields are designated with the private access specifier. This encapsulates the information content. This content
can be modified using only the methods setX and setY. When either of these methods are invoked, the distance field is
automatically updated and is available to the user with the method distanceFromOrigin .

If the fields information were not encapsulated, a user of class Point could directly modify the x coordinate or y
coordinate and forget to update the distance field. Of course this quantity could be computed each time it is needed
instead of updated each time the x or y coordinate of the point object is modified. In general, information about an object
can be obtained either through storage (as in Listing 1.1) or through computation.

1.7—
Inheritance

Another cornerstone of OOP is inheritance. Inspired from biological modeling, inheritance allows new classes to be
constructed that inherit characteristics (fields and methods) from ancestor classes while typically introducing more
specialized characteristics, new fields, or methods. A subclass is logically considered to be a specialized version or
extension of its parent and by inference its ancestor classes.

In Java, every object before its creation must be declared to be of a given type, typically the class that the object is an
instance of. This sometimes changes in the presence of inheritance because of an important principal, the principal of
polymorphic substitution . This principal states that wherever an object of

Page 9

a given type is needed in an expression, it may be substituted for by an object that is a descendent of the given type.
Although it may be difficult upon first contemplation to fully appreciate the power and implications of this principal, it
is one of the most important and fundamental concepts in object-oriented software construction.

Since polymorphic substitution states that a descendent class object may be used in place of its ancestor object, the
descendent class object must be considered to be of the ancestor type. This makes sense. Consider a high -level class
Vehicle that encapsulates the properties of all vehicle objects. Now consider a more specific class Bicycle with its unique
behavior that represents a specialization of class Vehicle. At the least, the methods of class Vehicle can be interpreted by
class Bicycle. Thus it makes sense that a Bicycle object can be used in place of a Vehicle object (it will know how to
respond to Vehicle messages). Clearly the opposite is not true. A Vehicle object cannot be used in place of a Bicycle
object since it will not necessarily be able to respond to the specialized methods of class Bicycle. A bicycle is a vehicle.

In general a subclass should logically satisfy the constraint that it can also be considered to be of the parent class type.
This is most fundamental. Regardless of what other purpose one may wish to achieve in using inheritance, this logical
constraint should be satisfied. A TeddyBear class should not be construed to be a subclass of Refrigerator. This
constraint is often referred to as the ''is a" or "is kind of" relationship between subclass and parent. The subclass should
satisfy the logical condition that it "is kind of" an instance of its parent. This logical constraint is sometimes referred to
as behavioral inheritance . The subclass enjoys the same behavioral characteristics as its parent in addition to the more
specialized behavior that distinguishes the subclass from the parent.

Another use of inheritance (some might argue "misuse") is implementation inheritance . Here the only purpose of
creating a parent class is to factor code that is needed by other subclasses. Since ancestor methods are generally inherited
by descendent classes (unless they are redefined in one or more descendent classes), the descendent class can consider
the ancestor method to be one of its own. Although implementation inheritance makes it possible to reuse code, if the
logical constraints of behavioral inheritance (the "is kind of" relationship) are not satisfied, the software architecture may
become muddled and difficult to maintain. Often implementation inheritance flows as a natural and useful byproduct
from behavioral inheritance.

It is not the goal of this introductory section on inheritance to present all the details of inheritance in Java. This is the
goal of Chapter 4.

To clarify the above ideas, an example that illustrates the use of inheritance is presented in this section without extensive
detail. Consider a SpecializedPoint class that extends the Point class presented in Listing 1.1.

SpecializedPoint Class

Suppose we wish to create a point class in which the x and y coordinates are constrained to be positive. That is, we wish
our SpecializedPoint objects to be located in the first quadrant of the complex plane.

First we need to make small modifications to class Point, given in Listing 1.1. The Modified Point class is given in
Listing 1.2.

Page 10

Listing 1.2 Modified Point Class

/** Modified Point class
*/
public class Point {

 // Fields
 protected double x;
 protected double y;
 protected double distance;

 // Constructor
 Point () {
 setX(0);
 setY(0);
 }

 Point (double x, double y) {
 setX(x);
 setY(y);
 }

 // Methods
 public void setX (double x) {
 this.x = x;
 updateDistance();
 }

 public void setY (double y) {
 this.y = y;
 updateDistance();
 }

 public double x () {
 return x;
 }

 public double y () {
 return y;
 }

 public double distanceFromOrigin () {
 return distance;
 }

 public String toString() {
 return ''<" + x + "," + y + ">" ;
 }

 // Internal methods
 protected void updateDistance () {
 distance = Math.sqrt(x*x + y*y);
 }
}

Page 11

Brief Explanation of Listing 1.2

The access modifiers for the three fields are changed from private to protected. This allows all subclasses to inherit these
fields without changing the accessibility of the fields in outside classes – encapsulation of internal information is
preserved while providing access to all descendent classes. If the fields were kept as private as in Listing 1.1, the
subclass SpecializedPoint would effectively have no fields directly accessible. This violates the concept of behavioral
inheritance in which a subclass is a kind of its parent. In order for a SpecializedPoint object to be of type Point, it must
retain the three internal fields (i.e., have an x value, a y value, and a distance value).

Two constructors are added to the class definition. As shall be explained further in Chapter 3, a constructor is a function
that always bears the name of its class and is used to produce new instances of the given class. In Listing 1.1 no
constructor was provided. In this case Java provides a default constructor that initializes all fields to zero (if they are
scalar fields as in Listing 1.1) and null if the fields are objects (reference types). This shall be explained in Chapter 2.
Notice that the field distance is automatically updated based on the values used in the two constructors for fields x and y
by invoking the setX and setY commands. This is an example of a good object-oriented design principle in action. A
consistent set of steps is followed for setting the value of distance .

The method toString() is useful because it is automatically invoked whenever a string representation of a Point is
desired. This is useful when doing input/output (I/O) as in the expression System.out.println(''pt = " + pt), where pt is a
Point object. Here the "+" or concatenation operator causes the toString() method to be automatically invoked,
converting the pt object to a string object. Class String and its important properties are discussed in Chapter 2.

Listing 1.3 Class SpecializedPoint

/** Details of a specialized Point class that extends class Point
*/
public class SpecializedPoint extends Point {

 // Constructor
 SpecializedPoint () {
 super(); // Invokes the parent class constructor
 }

 SpecializedPoint (double x, double y) {
 super(x, y);
 }

 // Methods
 public void setX (double x) { // Redefined method
 if (x < 0)
 throw new UnsupportedOperationException(
 "x must be greater than 0");

Page 12

 else {
 this.x = x;
 updateDistance();
 }
 }

 public void setY (double y) { // Redefined method
 if (y < 0)
 throw new UnsupportedOperationException(
 ''y must be greater than 0");
 else {
 this.y = y;
 updateDistance();
 }
 }
}

Brief Explanation of Listing 1.3

The key word extends establishes that class SpecializedPoint is a subclass of class Point. The methods setX and setY are
redefined. Code is written to ensure that the values of the parameters x and y are non-negative. If this is violated an
UnsupportedOperationException is generated. It is the responsibility of the caller (the block of code that invokes the
constructor or setX or setY) to ensure that x and y are non-negative. This shall be explained in more detail in Chapter 4.
All other methods from class Point are inherited in class SpecializedPoint and may be used as is.

Listing 1.4 presents a small test class that exercises some of the methods of classes Point and SpecializedPoint .

Listing 1.4 Class PointTest

/** A test program that exercises classes Point and SpecializedPoint
*/
public class PointTest {

 public static void main(String[] args) {
 Point p = new Point (-3, -4);
 SpecializedPoint sp1 = new SpecializedPoint ();
 SpecializedPoint sp2 = new SpecializedPoint ();

 sp1.setX(3);
 sp1.setY(4);
 System.out.println("sp1 = " + sp1);

Page 13

 sp2.setX(-
3); // Should cause an exception to be generated
 sp2.setY(4);
 System.out.println(''sp1 = "+ sp1);
 }
}

Brief Explanation of Listing 1.4

The code works fine and predictably until the method setX with parameter -3 is invoked on the SpecializedPoint object
sp2 . This causes the UnsupportedOperationException to be generated. Exceptions are discussed in Chapter 7. The
program output is:

sp1 = <3.0,4.0>
Exception in thread "main" java.lang.
 UnsupportedOperationException: x
and y must be greater than 0
at SpecializedPoint.setX(SpecializedPoint.java:24)
at PointTest.main(PointTest.java:15)

1.8—
Late Binding Polymorphism

Late binding is closely related to inheritance. Since methods may be redefined in descendent classes (like methods setX
and setY in Listing 1.3), it is common for several specialized versions of a given method to exist in a class hierarchy,
each with the same method signature (same function name, same return type, and same set of parameters). The runtime
system is able to bind the correct version of a method to an object based on the specific type of the object. This late
binding is an important characteristic of object-oriented systems. The word polymorphism derives from "many forms."
In the case of OOP, many forms refer to the different versions of a specific method defined in different subclasses. An
example that illustrates late binding is presented in the next section.

1.9—
Abstract Classes

A class in which one or more methods are not implemented is defined as an abstract class . A class in which all methods
are implemented is a concrete class . Abstract classes are often defined near the top of a hierarchical structure of classes.
Undefined or abstract methods are used in an abstract class to establish required behavior in any descendent concrete
class. An instance of an abstract class cannot be created .

Since some methods in an abstract class may be fully implemented, the benefit of implementation inheritance can be
realized along with behavior inheritance.

We illustrate the concepts of abstract class and late binding by considering skeletal portions of a small hierarchy of
Vehicle classes. We employ UML notation (see Appendix A) to represent the Vehicle hierarchy, shown in Figure 1.1.

Class Vehicle is shown as the root class in the hierarchy. Class Vehicle is abstract. This implies that no instances of
Vehicle can be constructed. The fields

TE
AM
FL
Y

Team-Fly®

Page 14

Figure 1.1.
UML diagram of Vehicle class hierarchy.

of Vehicle, if any, and all its methods, are inherited by every class in Figure 1.1. The fields and methods of Vehicle
describe behavior and state common to all subclasses of Vehicle (all vehicle types). The three immediate subclasses of
Vehicle – LandBased, WaterBased, and Airborne – are also abstract classes (no instances can be constructed). More
specialized characteristics (fields and methods) for each of these vehicle types are defined. Under LandBased is the
abstract class MotorVehicle. There are three concrete subclasses of MotorVehicle: Car, Truck, and Motorcycle . Each of
these inherits the fields and methods defined in the abstract classes MotorVehicle, Landbased, and Vehicle as well as
introducing more specialized behavior. Class Racecar is shown as a subclass of Car. It inherits the fields and methods of
Car as well as introducing its own specialized behavior (additional fields or methods).

What is the type associated with an instance of class Racecar? The answer: Racecar, Car, MotorVehicle, LandBased,
Vehicle, and Object (all classes inherit from Object). Yes, a Racecar instance is of six distinct types. What does this
mean in practice?

Consider the following variable declaration:

Vehicle rc = new Racecar();

Here an object rc of formal type Vehicle is constructed of actual type Racecar. The principle of polymorphic substitution
discussed in Section 1.7 is utilized. This allows an object of some descendent type to be substituted for the ancestor type.

Page 15

Let us consider the construction of abstract class Vehicle. Listing 1.5 presents the code for this abstract class.

Listing 1.5 Abstract Class Vehicle

import java.awt.*;

public abstract class Vehicle {

 // Fields
 protected int weight;
 protected Color color;

 // Methods
 public abstract void accelerate();

 int weight() {
 return weight;
 }

 int color() {
 return color;
 }

 // Other methods not shown
}

Listing 1.6 shows class Car.

Listing 1.6 Class Car

public class Car extends MotorVehicle {
 // Methods
 public void accelerate
() { /* Details related to car. */ }
 // Other methods not shown
}

Listing 1.7 shows class Racecar with accelerate() redefined.

Listing 1.7 Class Racecar

public class Racecar extends Car {
 // Methods
 public void accelerate() { /* Details related to race car. */ }
 // Other methods not shown
}

Page 16

To further illustrate the concept of late binding and type, consider a collection of vehicles defined in class VehicleApp in
Listing 1.8. Arrays are discussed in Chapter 2 but shall be utilized here.

The line of code

Vehicle [] vehicles = new Vehicle[7];

constructs an array that may hold seven vehicles. Here Vehicle is a placeholder for some concrete descendent type. The
next seven lines of code construct and assign specific vehicle objects to the vehicles array.

The code shown in boldface shows late binding polymorphism in action.

// Accelerate each vehicle
for (int index = 0; index < 7; index++)
 vehicles[index].accelerate();

Each vehicle object is sent the command accelerate() . There are seven distinct implementations of this method. The
appropriate method is bound to the command at runtime based on whether the object at vehicles[index] is a Car,
Racecar, Truck, Motorcycle, Boeing767, DC10 , or DC7 vehicle.

If later a new concrete vehicle subclass were added to the Vehicle hierarchy, with a unique accelerate() method, the code
shown in boldface would not have to be changed.

Listing 1.8 Class VehicleApp

public class VehicleApp {

 static public void main(String[] args) {
 Vehicle [] vehicles = new Vehicle[7];
 // Construct 7 vehicles
 vehicles [0] = new Car();
 vehicles [1] = new Racecar();
 vehicles [2] = new Truck();
 vehicles [3] = new Motorcycle();
 vehicles [4] = new Boeing767();
 vehicles [5] = new DC10();
 vehicles [6] = new DC7();

 // Accelerate each vehicle
 for (int index =0; index < 7; index++)
 vehicles[index].accelerate();
 }
}

Page 17

Figure 1.2.
Vehicle classes using interfaces.

1.10—
Interface

Java supports only single inheritance. That is, each class may have at most one parent. Suppose we wish to add a
Seaplane class to the Vehicle hierarchy. Clearly a seaplane is a mixture of Boat and Propeller . How can we handle this
with single inheritance?

A special type of abstract class, an interface , is available in Java. No fields (except static constants) are allowed in an
interface and all methods must be abstract.

Suppose that each of the abstract classes presented in Figure 1.1 were interfaces. The new hierarchy would be as shown
in Figure 1.2.

The interface Vehicle is given in Listing 1.9. The interface LandBased is given in Listing 1.10. The interface
MotorVehicle is given in Listing 1.11. The revised class Car is given in Listing 1.12. An interface and all methods in an
interface are abstract by default; the use of keyword abstract is optional.

Listing 1.9 Interface Vehicle

public interface Vehicle {
 // Methods
 public void accelerate();
 // Other methods not shown; all must be abstract
}

Page 18

Listing 1.10 Interface LandBased

public interface LandBased extends Vehicle {
 // Methods not shown
}

Listing 1.11 Interface MotorVehicle

public interface MotorVehicle extends LandBased {
 // Methods not shown
}

Listing 1.12 Class Car

public class Car implements MotorVehicle {
 // Methods
 public void accelerate() { /* Details for class Car. */ }
 // Other methods not shown
}

It is noted that class Car implements MotorVehicle rather than extends MotorVehicle . An interface can only be extended
by another interface (e.g., interface MotorVehicle extends interface LandBased). A concrete class such as Car can only
''implement" an interface.

A concrete class can implement multiple interfaces. This is what distinguishes an interface from an ordinary class.
Through multiple implementation, a concrete class can acquire the type and behavior of several interface classes.

Let us return to class Seaplane . This class can implement the interfaces WaterBased and Propeller as shown in Listing
1.13. When a class promises to implement an interface, it must implement every abstract method defined in that
interface plus those inherited through extension of the interface.

Listing 1.13 Class Seaplane

public class Seaplane implements WaterBased, Propeller {
 // Methods
 public void accelerate() { /* Details related to this class. */ };
 // Other methods not shown
}

A Seaplane object is of the following six types: Seaplane, WaterBased, Propeller, Airborne, Vehicle, and Object . A
Seaplane object may be used in place of any of these six types and can be said to be a kind of WaterBased or Propeller
or Airborne or Vehicle or Object class.

Page 19

Figure 1.3.
Delegation.

Since an interface class is a special case of an abstract class, it is also used to establish behavioral properties that must be
realized by any concrete class that implements the interface.

1.11—
Delegation

Delegation is a mechanism of problem solving in which one class designates another to take responsibility for a set of
actions. Typically an object of the class that carries out the set of actions (the delegate) is held as a field in the class that
delegates the responsibility. This is shown in the UML diagram of Figure 1.3. The arrow connecting the classes
indicates that the Delegate class is held as a field in the DelegatesResponsibility class.

Listing 1.14 shows the high-level structure of the relationship depicted in Figure 1.3.

Listing 1.14 Java Code That Shows Delegation

class DelegatesResponsibility {

 // Fields
 private Delegate delegate; // Carries out responsibilities

 // Methods
 public void takeAction() {
 delegate.takeAction();
 }
 // Other methods not shown
}

The method takeAction in class DelegatesResponsibility accomplishes its task by using the delegate object to perform
this task.

1.12—
Generic Classes and Interfaces

A generic class is one whose behavior is not dependent on some specific underlying type. As an example, let us consider
a class that performs sorting on some underlying collection of objects. If one carefully examines the process of sorting
(ordering information from smallest to largest or largest to smallest), it becomes evident that the only requirement that
the underlying objects must satisfy is that they can be compared. That is, it can be determined whether one object is
bigger or smaller than another object.

Page 20

An important interface that is provided in the java.util package (starting with Version 1.2) is Comparable . Listing 1.15
shows this interface.

Listing 1.15 Interface Comparable

interface Comparable { // Given in package java.util

 int compareTo (Object o);
}

The function compareTo returns a value of -1 if the receiver is smaller than the object o, 0 if the receiver equals the
object o, and 1 if the receiver is larger than object o.

Any class of objects that might serve as the basis for sorting must implement Comparable . Method sort has the signature
given below:

public void sort (Comparable [] data, int size) { // Details not shown}

1.13—
Summary

This chapter has introduced some of the basic foundation concepts underlying object-oriented programming. Further
details regarding these concepts shall be presented in the next several chapters. Among the basic concepts introduced in
this chapter are:

• Data abstraction – Associates an underlying data type with a set of operations that may be performed on the data type.

• Encapsulation – The fusion of underlying data with a set of operations. The internal representation of the data is
encapsulated (hidden) but can be manipulated by the specified operations.

• Object – An abstraction of some reality. This reality may be a physical object but is more often an idea or concept that
may be represented by an internal state and a set of actions that can modify or access this internal state.

• Message – Messages are sent to or invoked on objects.

• Method – A function or procedure that defines the action associated with a message.

• Class – Describes the behavior of objects, its instances. The external or public view describes the messages that may be
sent to instances. Each possible message is defined by a method. These include messages that affect the internal state of
the object and messages that return information about this internal state. The internal or private view describes the fields
that hold the information content of instances. In addition to fields, the private view of a class may define private
methods that are used to support public methods but cannot be invoked outside of the class.

Page 21

• Inheritance – Inspired from biological modeling, inheritance allows new classes to be constructed that inherit
characteristics (fields and methods) from ancestor classes while typically introducing more specialized characteristics,
new fields, or methods. A subclass is logically considered to be a specialized version or extension of its parent and by
inference its ancestor classes.

• Late binding – Late binding is closely related to inheritance. Since methods may be redefined in descendent classes it
is common for several specialized versions of a given method to exist in a class hierarchy, each with the same method
signature (same function name, same return type, and same set of parameters). The runtime system is able to bind the
correct version of a method to an object based on the specific type of the object.

• Abstract class – A class in which one or more methods are not implemented. No instances may be created of an
abstract class.

• Concrete class – A class in which all methods are implemented directly or through inheritance from another class.

• Interface – A special type of abstract class in which no fields (except for static constants) are allowed and all methods
must be abstract.

• Generic class – The behavior is not dependent on a specific data type.

1.14—
Exercises

1 List five data abstractions. For each, describe the operations that may be performed on the underlying
data.

2 Describe several examples of inheritance. Explain the methods and fields of the parent class and its descendent classes.

3 Construct an example that illustrates late binding polymorphism. You need to identify a small hierarchy of classes and
one or more methods that are redefined and behave polymorphically.

4 Construct an example where delegation might be useful.

5 Construct several generic classes. Describe their properties and why they are generic.

Page 22

2—
Objects

Objects, objects everywhere! OOP is about sending messages to objects. It is about the construction, manipulation, and
destruction of objects.

This chapter looks at objects in more detail. In particular we focus on the creation, assignment, cloning, and equality
testing of objects. We examine scalar types and contrast them with reference types. We discuss in some detail three
basic collection types: array, string, and vector.

2.1—
Reference Semantics and Creating Objects

In Java, an object is associated with a reference type – a class. An object is more specifically an instance of a class.
Memory for the object and its contents (field values) is allocated dynamically using the object creation operator new.
Before an object can be created it must be declared to be of a reference type.

Consider an object, myStack, that is declared to be of type Stack .

Stack myStack;

The initial value of myStack is null. An object with value null is really only a potential object. With value null, the object
holds no information and no messages may be sent to the object. The object is said to be uninitialized.

To bring the object myStack to life, the object creation operator new must be used to activate a constructor in the class
Stack . This might be accomplished as follows:

myStack = new Stack(); // Creating an instance of Stack

It is assumed that class Stack has a constructor with no parameters that creates and initializes an empty stack or if no
explicit constructor is provided, a default constructor is activated that creates a Stack object and initializes all its fields of
reference type to null. Fields of primitive type also have default initializations.

The object myStack could be declared and initialized at once as follows:

Stack myStack = new Stack();

Page 23

Once initialized, the variable name myStack becomes a reference to the memory storage that holds the contents of this
particular Stack object. Messages may be sent to this object using the usual dot operator that connects an object to its
message. An example might be:

myStack.push
(str1); // Sending message push to object myStack

Here the message push is sent to the object myStack with an object str1 (a string object) as its parameter. This message
changes the internal state of the object myStack.

If one attempts to send a message to an uninitialized object (one whose value is null), a runtime NullPointerException is
generated by the system. This is a serious defect and can cause a program crash.

2.2—
Assigning, Aliasing, and Cloning Objects

Several simple classes are constructed to assist in explaining the subtleties of assigning, copying, and cloning objects. As
a convenience, Listing 2.1 repeats the implementation of class Point presented in Chapter 1.

Listing 2.1 Class Point

/** Details of class Point
*/
public class Point {

 // Fields
 protected double x;
 protected double y;
 protected double distance;

 // Constructor
 Point () {
 setX(0);
 setY(0);
 }

 Point (double x, double y) {
 setX(x);
 setY(y);
 }

 // Methods
 public void setX (double x) {
 this.x = x;
 updateDistance();
 }

TE
AM
FL
Y

Team-Fly®

Page 24

 public void setY (double y) {
 this.y = y;
 updateDistance();
 }

 public double x () {
 return x;
 }

 public double y () {
 return y;
 }

 public double distanceFromOrigin () {
 return distance;
 }

 public String toString() {
 return ''<" + x + "," + y + ">" ;
 }

 // Internal methods
 protected void updateDistance () {
 distance = Math.sqrt(x∗x + y∗y);
 }
}

Listing 2.2 presents the details of a class Line .

Listing 2.2 Class Line

/** Encapsulates line
*/
public class Line {

 // Fields
 private Point pt1, pt2; // End points of line

 // Constructors
 public Line (Point pt1, Point pt2) {
 this.pt1 = pt1;
 this.pt2 = pt2;
 }

 // Methods
 public double length() {

Page 25

 return Math.sqrt((pt2.y() - pt1.y()) * (pt2.y() - pt1.y()) +
 (pt2.x() - pt1.x()) * (pt2.x() - pt1.x()));
 }

 public String toString() {
 return ''point1: " + pt1 + " point2: " + pt2;
 }
}

Two end points, pt1 and pt2 give the internal fields that define the information content of a Line . The constructor takes
these two end points as input and defines pt1 and pt2 using direct assignment of objects. We will examine the effect that
such assignment has after considering a test program in Listing 2.3.

Listing 2.3 Effects of Object Assignment

public class CopyTest {

 public static void main(String[] args) {
 Point pt1 = new Point(1, 1);
 Point pt2 = new Point(2, 2);
 Line line1 = new Line(pt1, pt2);
 System.out.println ("line1 = " + line1);
 // Change starting point
 pt1.setX(0);
 pt1.setY(0);
 System.out.println(
 "After pt1.setX(0) and pt1.setY(0) \n line1 = " + line1);
 }
}

The output of Listing 2.3 is:

line1 = point1: <1.0,1.0> point2: <2.0,2.0>
After pt1.setX(0) and pt1.setY(0)
 line1 = point1: <0.0,0.0> point2: <2.0,2.0>

The value of line1 has been affected by changing the values of pt1 and
pt2.

Let us analyze the code in Listings 2.2 and 2.3. Figure 2.1 shows the effect of the direct assignments in the constructor
of class Line (see Listing 2.2). Figure 2.2 shows the objects line1, pt1, and pt2 after changing the values in pt1.

The effect of the assignment statements in the constructor of class Line is to provide two

Figure 2.1.
The objects line1 and pt1 and

pt2 before changing pt1.

Page 26

Figure 2.2.
The objects line1 and pt1 and

pt2 after changing pt1.

sets of references to the point objects pt1 and pt2. The values of these two points are stored in only one location in
memory but are referenced in the fields of line1 and the objects pt1 and pt2 (references to this storage). Therefore, any
change that occurs in the point objects pt1 or pt2 as the program evolves directly affects the fields of the line1 object.
This is called an aliasing effect and is generally undesirable. When an object is constructed, such as line1, its internal
state (end points pt1 and pt2) should not be affected by external influences as occurred here.

We can correct the aliasing problem by modifying the constructor in class Line. The new constructor is given as follows:

public Line (Point pt1, Point pt2) {
 this.pt1 = new Point(pt1.x(), pt1.y());
 this.pt2 = new Point(pt2.x(), pt2.y());
}

Instead of performing a direct assignment, which caused the aliasing problem, we associate the fields pt1 and pt2 with
entirely new Point objects constructed as shown above. The aliasing problem is solved.

Figure 2.3 shows the relationship among the various objects after the pt1 object has been modified and using the alias-
free version of Line .

Consider now a new class LineHolder given in Listing 2.4.

Listing 2.4 Class LineHolder

/** Holds two lines
*/
public class LineHolder {

 // Fields
 private Line line1, line2;

 // Constructor
 public LineHolder (Line line1, Line line2) {
 this.line1 = line1;
 this.line2 = line2;
 }

 // Methods
 public void setLine1 (Line line1) {
 this.line1 = line1;
 }

Page 27

Figure 2.3.
The object line1 with its own independent field objects.

 public void setLine2 (Line line2) {
 this.line2 = line2;
 }

 public String toString () {
 return ''line1: " + line1 + " line2: " + line2;
 }
}

Now consider a modified CopyTest program given in Listing 2.5.

Listing 2.5 Modified CopyTest

public class CopyTest {

 public static void main(String[] args) {
 Point pt1 = new Point(1, 1);
 Point pt2 = new Point(2, 2);
 Point pt3 = new Point(3, 3);
 Point pt4 = new Point(4, 4);
 Point pt5 = new Point(5, 5);
 Point pt6 = new Point(6, 6);
 Line line1 = new Line(pt1, pt2);
 Line line2 = new Line(pt3, pt4);
 Line line3 = new Line(pt5, pt6);

 LineHolder lineHolder1 = new LineHolder(line1, line2);
 LineHolder lineHolder2;
 lineHolder2 = lineHolder1;

 System.out.println("lineHolder2 = " + lineHolder2);

 lineHolder1.setLine2(line3);
 System.out.println("After line1 is changed, lineHolder2 = " +
 lineHolder2);
 }
}

Page 28

The constructor in class LineHolder produces the same aliasing effect because of the assignment statements. How can
we fix this problem?

If we attempt the same solution as before we need to construct new line1 and line2 objects as we did when we corrected
the aliasing problem in class Line . But we have a problem. We cannot construct these line objects since the constructor
for class Line requires creating a line in terms of its two end points and we cannot access the end points for the two input
lines in class LineHolder since they are private fields.

One approach to fixing the problem is to provide accessor methods in class Line that return its two end points. Then two
new line objects could be created in the constructor for class LineHolder using end points of the input line1 and line2
objects in creating two new lines. We shall employ another approach.

An empty interface Cloneable is provided in package java.lang. A class that implements the Cloneable interface enables
cloning for its instances. The class may redefine the clone method inherited from class Object. We define meaningful
clone methods for classes Line and LineHolder. The modified class definitions are given in Listings 2.6 and 2.7.

Listing 2.6 Final Modification to Class Line

public class Line implements Cloneable {

 // Fields
 private Point pt1, pt2; // End points of line

 // Constructors
 public Line (Point pt1, Point pt2) {
 this.pt1 = new Point(pt1.x(), pt1.y());
 this.pt2 = new Point(pt2.x(), pt2.y());
 }

 // Methods
 public double length() {
 return Math.sqrt((pt2.y() - pt1.y()) * (pt2.y() - pt1.y()) +
 (pt2.x() - pt1.x()) * (pt2.x() - pt1.x()));
 }

 public String toString () {
 return ''point1: " + pt1 + " point2: " + pt2;
 }

 public Object clone () {
 return new Line(pt1, pt2);
 }
}

Page 29

Listing 2.7 Final Modification to Class LineHolder

public class LineHolder implements Cloneable {

 // Fields
 private Line line1, line2;

 // Constructor
 public LineHolder (Line line1, Line line2) {
 this.line1 = (Line) line1.clone();
 this.line2 = (Line) line2.clone();
 }

 // Methods
 public void setLine1 (Line line1) {
 this.line1 = line1;
 }

 public void setLine2 (Line line2) {
 this.line2 = line2;
 }

 public String toString () {
 return ''line1: " + line1 + " line2: " + line2;
 }

 public Object clone () {
 return new LineHolder((Line) line1.clone(),
 (Line) line2.clone());
 }
}

The clone method in class Line returns a new Line object containing the same fields. The clone method in class
LineHolder returns a new LineHolder object using clones of its two fields. It is necessary to use the (Line) downcast
operator since the clone function returns a formal type Object and a type Line is needed in the constructor for
LineHolder. Listing 2.8 shows the final modification of the test class CopyTest.

Listing 2.8 Final Modification of Class CopyTest

public class CopyTest {

 public static void main(String[] args) {
 Point pt1 = new Point(1, 1);
 Point pt2 = new Point(2, 2);
 Point pt3 = new Point(3, 3);

Page 30

 Point pt4 = new Point(4, 4);
 Point pt5 = new Point(5, 5);
 Point pt6 = new Point(6, 6);
 Line line1 = new Line(pt1, pt2);
 Line line2 = new Line(pt3, pt4);
 Line line3 = new Line(pt5, pt6);

 LineHolder lineHolder1 = new LineHolder(line1, line2);
 LineHolder lineHolder2;
 lineHolder2 = (LineHolder) lineHolder1.clone();

 System.out.println(''lineHolder2 = " + lineHolder2);

 lineHolder1.setLine2(line3);
 System.out.println("After line1 is changed, lineHolder2 = " +
 lineHolder2);
 }
}

The only line of code that has changed is shown in boldface. The downcast operator (LineHolder) must be used since
lineHolder1.clone() returns a formal type Object and a LineHolder type is needed.

The aliasing problems that occurred in class Line and LineHolder were solved by creating fields that were totally new
and independent objects that were decoupled from the objects sent in as parameters (Point objects for class Line and
Line objects for class LineHolder).

2.3—
Equality Testing

What does it mean to compare two objects using the predefined equality operator, "=="? The predefined equality
operator returns true if the object references are identical. This is true only if there exist two separate references to the
same underlying storage as when aliasing occurs. Consider the following code segment:

Point pt1 = new Point(1, 1);
Point pt2 = new Point(1, 1);
System.out.println("pt1 == pt2: " + (pt1 == pt2));

Although we know that pt1 has the same internal content as pt2 (they are equal in the usual sense) the output is false
indicating that pt1 and pt2 are not equal.

The root class Object in the Java class library hierarchy has an equals method with the following signature:

public boolean equals(Object obj)

Page 31

This default function works just as the predefined equality operator ''==". It is fairly useless as is and should be redefined
in classes that need it.

For class Point we need to add the following equals method:

public boolean equals (Object obj) {
 return ((Point) obj).x() == x && ((Point) obj).y() == y;
}

This method returns true if the x and y values of the point objects being compared are identical. The (Point) downcast
operators are needed since the formal type of the parameter is Object whereas the actual type is Point.

2.4—
Scalar Versus Reference Types

Reference types include programmer-defined classes such as Point, Line, and LineHolder from Section 2.2 as well as the
vast set of classes provided in the standard Java libraries. A reference type is associated with a class. In order to be
usable, a variable declared to be of a reference type must be created using the object creation operator new before it can
receive messages. When an object is created, storage for its contents is allocated.

Java provides several scalar types. These include primitive numeric types, plus boolean and char. The primitive types
are not associated with a class and do not need to be created. They may be initialized at their point of declaration. The
following segment of code contrasts the initialization of reference types and scalar types.

Point point1 = new Point(2, 2);
Point point2 = new Point(3, 3);
Line myLine = new Line(point1, point2);
int height = 72;
double weight = 175.4;

The three variables declared to be of reference types (point1, point2, and myLine) are each created and transformed into
objects using the operator new. As each of these objects is created it is initialized.

The two variables declared to be of scalar type (height and weight) are declared and initialized in a single
declaration/initialization expression. Storage for these variables does not have to be allocated by the programmer using
new.

2.5—
Scalar Types and Their Wrappers

Every scalar (primitive) type has an associated wrapper class or reference type. Table 2.1 lists the scalar types and their
associated wrappers.

As we shall see in the next section, wrapper classes are essential when one wishes to store a collection of primitive
values in many collection classes. In this

Page 33

int intValue = 25;
Integer integerValue = new Integer(intValue);

Suppose one wishes to retrieve the int value from its wrapper. This may be done as follows:

int intValue = integerValue.intValue();

The method intValue() is defined in class
Integer .

The same process may be used to convert any of the numeric types, char or boolean to a wrapper and back again. For
example,

double doubValue = 1.234;
Double doubleValue = new Double(doubValue);
double backAgain = doubleValue.doubleValue();

Often numeric information is input as a String. Class String , to be described in more detail in the next section, holds a
sequence of char values. How can we convert a String to its scalar equivalent? We first illustrate this with a String
representation of an int.

String str = "3456" ;
int intValue = Integer.valueOf(str).intValue();

The static method valueOf, in class Integer, converts the String to an Integer wrapper. The intValue function then
converts the Integer to an int. An alternative method of doing the same thing is the following:

String str = "3456" ;
int intValue = (new Integer(str)).intValue();

This second approach is more general because it can be used in converting a String to any numeric type. For example, to
convert the string ''1.314" to a double one would do the following:

String str = "1.314" ;
double doubleValue = (new Double (str)).doubleValue();

In both cases, temporary wrapper objects (Integer in the first case and Double in the second case) are created as a means
toward converting each to a scalar value.

Page 34

2.7—
Strings

One of the most widely used Java classes is class String . This reference type is used to represent sequences of
characters.

A sequence of characters delimited by ordinary quotation marks forms a String . One can create a String in the usual way
using the object creation operator new followed by a constructor. To create a string with the value ''Hello" one could
write the following code:

String str = new String("Hello");

An alternative approach is possible with class String . This commonly used approach represents an exception to the
requirement that the operator new must be used to create an object. One could write:

String str = "Hello" ;

Here the sequence of characters that defines the value of the String is used directly as if the variable str were a scalar
type. In our view it is regrettable that this exception to object creation exists. Our experience suggests that
inconsistencies should be avoided in a programming language if at all possible. Inconsistency leads to complexity that
may lead to confusion and errors. The C++ language is a living example of an overly complex language that is riddled
with inconsistencies.

Two basic features of class String are the methods length and charAt. The method length returns the number of
characters in the string. The method charAt returns the character at a specified index (index 0 holding the first character
of the string).

In any String method, an index position less than zero or greater than length() - 1 causes a
StringIndexOutOfBoundsException to be thrown.

A String object is immutable. That is, once its value is set (through object creation), it cannot be changed. A String
object may be thought of as "read only".

The "+" operator is used to create a new string by concatenation of existing strings. The string, str = "String 1" + "String
2", is a new string with the value "String1 String2". When a primitive type such as int or boolean is concatenated to a
string using the "+" operator, the primitive type is automatically converted to a string prior to concatenation. So for
example in the expression,

System.out.println ("The answer is " + myValue);

the variable myValue , assumed to be of type double, is automatically converted to a String object before the
concatenation is performed.

String Methods

Table 2.2 lists several important String methods.

TE
AM
FL
Y

Team-Fly®

Page 35

Table 2.2 Several Important String Methods

Method Returns Arguments

toUpperCase() Reference to a String object None

toLowerCase() Reference to a String object None

length() An integer None

trim() Reference to a String object None

substring Reference to a String object Two integers

We illustrate the use of each of these in the following segment of code:

String str1 = " ABcdEFghIJ" ;
System.out.println (''The length of str1 = " + str1.length());
System.out.println ("The uppercase value of str1 = " +
 str1.toUpperCase());
System.out.println ("The lowercase value of str1 = " +
 str1.toLowerCase());
System.out.println ("The trim value of str1 = " + str1.trim());
System.out.println ("The last three characters of str1 = " +
 str1.substring (str1.length() - 3,
 str1.length()));

The output of this program segment is:

The length of str1 = 15
The uppercase value of str1 = ABCDEFGHIJ
The lowercase value of str1 = abcdefghij
The trim value of str1 = ABcdEFghIJ
The last three characters of str1 = hIJ

The queries toUpperCase(), toLowerCase(), trim(), and substring() return a new string object. The original string object
is unaffected by these operations.

String Comparisons

The method compareTo may be used to determine the lexicographic ordering of two strings. This ordering is based on
Unicode character ordering.

Consider the expression

str1.compareTo(str2);

If the result returned is -1, str1 is "smaller" than str2 (would occur first if one were alphabetizing the two strings). If the
result returned is 0, the two strings

Page 36

are equal (same length and contents). If the result returned is 1, str1 is ''larger" than str2 (would occur second if one were
alphabetizing the two strings).

One should always compare strings for equality using the compareTo method and not the double equals, "==" operator.
The latter, as indicated earlier, compares only the object references that will be different when comparing two identical
but independent strings.

2.8—
Class StringBuffer

A StringBuffer object is not immutable, unlike a String object. A string buffer implements a mutable (changeable)
sequence of characters.

In creating a StringBuffer object, one must specify its capacity (the maximum number of characters that can be held). If
the capacity is exceeded, the capacity will be automatically increased. In the interest of efficiency, one should attempt to
specify an initial capacity that is sufficient to hold all the characters that will be necessary.

A StringBuffer object can be converted to a String object by invoking the toString() method on the StringBuffer object.
The principal operations for a StringBuffer object are append and insert. The following segment of code illustrates these
and other basic operations in class StringBuffer .

StringBuffer strBuf = new StringBuffer(10);
strBuf.insert(0, 1234);
strBuf.append(567);
System.out.println(strBuf); // Output: 1234567
strBuf.setCharAt(3, '3');
System.out.println(strBuf); // Output: 1233567
strBuf.insert(2, "ABC");
System.out.println(strBuf); // Output: 12ABC33567
strBuf.replace(2, 5, "DEF");
System.out.println(strBuf); // Output: 12DEF33567
strBuf.reverse();
System.out.println(strBuf); // Output: 76533FED21
strBuf.insert(6, 7.777);
System.out.println(strBuf); // Output: 76533F7.777ED21

In applications in which a great deal of text manipulation is needed, a StringBuffer object can be created, the text
manipulation can be performed on the StringBuffer object, and later, if desired, a String object can be produced that
holds the result.

2.9—
Arrays

Arrays have been a staple part of programming languages since Fortran. In many programming languages arrays are
built-in types that are statically dimensioned and allow access to a collection of data through direct indexing. Static

Page 37

dimensioning means that once the size of an array is set it cannot be changed. Direct indexing means that data may be
assigned or accessed at an index specified by an integer value within the range given by the size of the array.

In Java, an array is an object and is represented by a reference type. Like all reference types an array must be created
before it can be used. Unlike other reference types a constructor is not explicitly invoked but the object creation operator
new must be used in a different way. The Array type in Java is part of the language; you will find no class description of
it in the Java library documentation. We illustrate array object declaration and creation with the following segment of
code. It constructs an array that can hold five String objects, another array that can hold fifteen int objects and an array
that can hold thirty-five Line objects.

String [] strArray = new String[5];
int [] intArray = new int[15];
Line [] lineArray = new Line[35];

The ''[]" symbol following the base types is used to designate an array of the base type. An array can hold either
primitive types or reference types.

The "[]" operators are used to assign or access information at a particular index within an array. For example, to assign
the value 25 to index 3 of the intArray, one would write intArray[3] = 25. If we wish to assign the string "Richard" to
the 0th index of the strArray we would write strArray[0] = "Richard".

The index range of all arrays is from 0 to one less than the size of the array. Any attempt to write or access an index out
of this range causes an ArrayIndexOutOfBoundsBounds exception to be thrown.

We can initialize the values of an array at its point of declaration as follows:

double [] myArray = {1.2, 1.3, 1.6, -12.8, 16.2};

The size of myArray will be 5 since we have provided five constants in the initialization expression. The index range for
myArray is 0 to 4.

Suppose we wish to fill an array of type int with the consecutive integers from 1 to 1,000,000. The following code
segment demonstrates one way to do this.

int myArray = new int [1000000];
for (int i = 0; i < 1000000; i++)
 myArray [i] = i;

If the less than operator ("<") in the for loop were changed to a less than or equal to operator ("<="), we would run past
the boundaries of the array producing an ArrayIndexOutOfBoundsBounds exception.

One can determine the size of an array object, say myArray , by directly accessing its length field by using
myArray.length. This is inconsistent with the length() function in class String . Another unfortunate inconsistency!

Page 38

Suppose one wishes to copy the contents of one array to another, say myArray to yourArray . What is wrong with the
following?

yourArray = myArray;

The assignment given above creates two names (references) to the same storage. If later, any elements of myArray are
changed, yourArray will be affected as well. We have not copied information using the above assignment but instead
have just created aliasing.

The correct method for copying the values from one array to another is to use the static method arraycopy given in class
System. Function arraycopy works as follows:

arraycopy (sourceArray, sourcePosition, destinationArray,
 destinationPosition, numberOfEntriesToCopy);

Another way of copying myArray to yourArray is:

for (int index = 0; index < myArray.length; index++)
 yourArray[index] = myArray[index];

We consider a relatively simple application of arrays. Suppose that we wish to store the grades of students in a class and
then determine the following statistics: highest grade, lowest grade, and average grade. Suppose further that the grades
are held in an ASCII file, one grade per line. The name of this file is grades.txt.

Our task is to write a complete application that reads the input file, stores the information in an array, and computes the
various statistics.

Design of Solution

1. Let us assume that we have loaded the raw data values into an array.

2. To compute the highest grade we assume that the first element in the array is the largest (this will probably not be
true, but it is just our initial assumption).

3. We iterate through the grades and compare each of the grades found to the largest. If we find a grade (as we most
probably shall) that is larger than the current largest grade, we replace the largest grade with the new grade and continue
our iteration through the grades. When we have completed this iteration, we should have the largest grade.

4. To compute the smallest grade we assume that the first element in the array is the smallest (again this will probably
not be true).

5. We again iterate through the grades and compare each grade found to the smallest. If we find a grade that is smaller
than the current smallest, we replace the

Page 39

current smallest with this new grade that is smaller. When we have completed this iteration we should have the smallest
grade.

6. To compute the average grade we must compute the total of all the grades and then divide this total by the number of
grades. We initialize a variable sum of type double to zero.

Listing 2.9 shows an implementation of the solution.

Listing 2.9 Class Grades

/** A class that manages the computation of several grading statistics.
*/
import java.io.*;
import java.util.*;

public class Grades {

 // Internal fields
 private int numberGrades;
 private double [] data;

 // Constructor
 public Grades(String fileName) throws IOException {
 data = new double [100];
 BufferedReader diskInput = new BufferedReader (
 new InputStreamReader (
 new FileInputStream (
 new File (fileName))));
 // Load internal array data with grades
 String line;
 line = diskInput.readLine();
 while (line != null) {
 data [numberGrades] = (new Double (line)).doubleValue();
 numberGrades++;
 line = diskInput.readLine();
 }
 }

 // Methods
 public double maximumGrade () {
 double largest = data[0];
 for (int i = 1; i < numberGrades; i++) {
 double nextValue = data [i];
 if (nextValue > largest)
 largest = nextValue;
 }
 return largest;
 }

Page 40

 public double minimumGrade () {
 double smallest = data [0];
 for (int i = 1; i < numberGrades; i++) {
 double nextValue = data [i];
 if (nextValue < smallest)
 smallest = nextValue;
 }
 return smallest;
 }

 public double averageGrade () {
 double sum = 0.0;
 for (int i = 0; i < numberGrades; i++) {
 double nextValue = data [i];
 sum += nextValue;
 }
 return sum / numberGrades;
 }
}

2.10—
Vector

Class Vector is an important container class. It is available in the standard Java class java.util.Vector . It can hold any
number of elements, is dynamic, and is indexable; that is, one can insert or access information at a specific index. A
Vector is dynamic and automatically resizes itself if an insertion causes the number of elements to exceed the current
capacity.

There are several constructors in class Vector. The constructor without parameters, Vector() , assigns a default capacity
of 10. The constructor Vector (int capacity) allows the user to set the initial capacity.

The behavior of a Vector is completely defined by its methods. The more widely used methods of class Vector are
presented in Listing 2.10.

Listing 2.10 A Description of Class Vector

/**
 * Most of the key methods of this standard Java class are presented.
 * No implementation details are shown.
*/
public class Vector {

 // Constructors
 public Vector () { /* Constructs an empty Vector*/ }

 public Vector (int initialCapacity) {
 /* Empty vector with specified initial capacity */
 }

Page 41

 public Vector (int initialCapacity,
 int capacityIncrement) {
 /* Constructs an empty vector with the specified initial
 * capacity and capacity increment.
 */
 }

 // Methods
 public void trimToSize () {
 /* Trims the capacity of this vector to be the vector's current
 size. An application can use this operation to minimize the
 storage of a vector.
 */
 }

 public void setSize (int newSize) {
 /* Sets the size of this vector. If the new size is greater
 than the current size, new null items are added
 to the end of the vector. If the new size is less
 than the current size, all components at index
 newSize and greater are discarded.
 */
 }

 public void setElementAt (Object obj, int index) {
 /* Sets the component at the specified index of this vector
 to be the specified object. The previous component
 at that position is discarded.
 The index must be a value greater than or equal to 0
 and less than the current size of the vector.
 Throws: ArrayIndexOutOfBoundsException if the index was
 invalid.
 */
 }

 public void insertElementAt (Object obj, int index) {
 /* Inserts the specified object as a component in this vector
 at the specified index. Each component in this vector
 with an index greater than or equal to the specified index
 is shifted upward to have an index one greater than
 the value it had previously. The index must be a value
 greater than or equal to 0 and less than or equal to the
 current size of the vector.
 Throws: ArrayIndexOutOfBoundsException if the index was
 invalid.
 */
 }

 public void addElement (Object obj) {
 /* Adds the specified object to the end of this vector,

Page 42

 increasing its size by one. The capacity of this vector
 is increased if its size becomes greater than its capacity.
 */
 }

 public boolean removeElement (Object obj) {
 /* Removes the first occurrence of the argument from this
 vector. If the object is found in this vector, each
 component in the vector with an index greater than
 or equal to the object's index is shifted downward to have an
 index one smaller than the value it had previously. Returns
 true if the argument was a component of this vector,
 false otherwise.
 */
 }

 public void removeElementAt (int index) {
 /* Deletes the component at the specified index.
 Each component in this vector with an index
 greater than or equal to the specified index is shifted
 downward to have an index one smaller than the value it
 had previously. The index must be a value greater than or
 equal to 0 and less than the current size of the vector.
 Throws: ArrayIndexOutOfBoundsException if the index was
 invalid.
 */
 }

 public void removeAllElements () {
 /* Removes all components from this vector and sets its size to
 zero.
 */
 }

 public int capacity () {
 /* Returns the current capacity of this vector. */
 }

 public int size () {
 /* Returns the number of components in this vector. */
 }

 public boolean isEmpty () {
 /* Returns true if the vector has no components. */
 }

 public Enumeration elements() {
 /* Returns an enumeration of the components of this vector. */
 }

Page 43

 public boolean contains (Object elem) {
 /* Tests if the specified object is a component in this vector.
 */
 }

 public int indexOf (Object elem) {
 /* Searches for the first occurrence of the given argument
 testing for equality using the equals method.
 Returns -1 if the object is not found, otherwise the index of
 elem.
 */
 }

 public int indexOf (Object elem, int index) {
 /* Searches for the first occurrence of the given argument
 beginning the search at index and testing for equality
 using the equals method.
 */
 }

 public Object elementAt (int index) {
 /* Returns the component at the specified index.
 Throws: ArrayIndexOutOfBoundsException
 if an invalid index was given.
 */
 }

 public Object firstElement () {
 /* Returns the first component of this vector.
 Throws: NoSuchElementException if this vector has no
 components.
 */
 }

 public Object lastElement () {
 /* Returns the last component of the vector.
 Throws: NoSuchElementException
 if this vector is empty.
 */
 }

 public Object clone () {
 /* Returns a clone of this vector. */
 }

 public String toString () {
 /* Returns a string representation of this vector. */
 }
}

Page 44

Comments Related to Listing 2.10

• There are three constructors in this class, each of course with the name Vector.

• Commands trimToSize() and setSize() may be used to explicitly control the size of a Vector. It is dangerous to use
setSize() on a nonempty vector.

• Command setElementAt takes a parameter of type int and a parameter of type Object. This implies that any reference
type (nonprimitive type) can be put into a Vector at the specified index. Object acts as a placeholder for any object type.
This command replaces the element that currently occupies that index location. If the index specified is out of range, an
exception is raised.

• Command insertElementAt also takes a parameter of type Object (Object again serves as a placeholder for any object
type). The command does not replace the element currently at the specified index but pushes it upwards. If the index
specified is out of range (larger than size -1), an exception is raised.

• Command addElement increases the size of the Vector by a factor of two or a user -specified capacityIncrement, if the
number of elements exceeds the capacity.

2.11—
Enumeration

The query elements() given in class Vector returns an object of type Enumeration . An Enumeration allows one to
traverse through all of the elements of a Vector. The following code illustrates how one might do this. Assume that one
has constructed a Vector v . We also assume that each element of the Vector can respond to the toString() method so it
can be printed.

for (Enumeration e = v.elements(); e.hasMoreElements
() ;) {
 System.out.println(e.nextElement());
}

Listing 2.11 presents a simple example that exercises some of the protocol of class Vector and utilizes the enumeration
given above.

Listing 2.11 Class VectorTest

/** A test program that exercises some of the behavior of class Vector.
*/
import java.util.*;
public class VectorApp {

 // Fields
 private Vector v = new Vector();

 // For internal use
 private void displayVector() {
 System.out.println();

TE
AM
FL
Y

Team-Fly®

Page 45

 for (Enumeration enum = v.elements(); enum.hasMoreElements();)
 System.out.println (enum.nextElement());
 }

 private void buildVector() {
 v.addElement (''John");
 v.addElement ("Mary");
 v.addElement ("Paul");
 v.addElement ("Cindy");
 System.out.println ("v.capacity() = " + v.capacity());
 v.setElementAt ("Richard" , 1);
 v.insertElementAt ("Mary" , 1);
 v.removeElementAt (0);
 System.out.println ("v.lastElement() = " + v.lastElement());
 System.out.println ("v.size() = " + v.size());
 v.trimToSize();
 System.out.println ("v.capacity() = " + v.capacity());
 }

 public static void main(String[] args) {
 VectorApp app= new VectorApp();
 app.buildVector();
 app.displayVector();
 }
}

The output of the program in Listing 2.11 is

v.capacity() = 10
v.lastElement() = Cindy
v.size() = 4
v.capacity() = 4

Mary
Richard
Paul
Cindy

Suppose we desire to construct a Vector of integer primitives (int). The formal type specified for a Vector is Object . This
type serves as a placeholder for any reference type (any object type). This allows us to insert elements of type String
earlier since String is a bona fide reference type (it is a class). But what about inserting elements of type int or double or
any other primitive type?

To insert a primitive type into a Vector we must wrap the type using one of the standard wrapper classes (Integer for int,
Double for double, Float for float, Boolean for boolean, Character for char). Listing 2.12 demonstrates how we can
accomplish this.

Page 46

Listing 2.12 Using Wrapper Classes for Primitive Types in a Vector

/** A test program to show how wrapper objects may be used with Vector.
*/
import java.util.*;

public class VectorWrapperApp {

 public static void main(String[] args) {
 Vector v = new Vector();
 v.addElement (new Integer (10));
 v.addElement (new Boolean (true));
 v.addElement (new Double (-1.95));
 v.addElement (''We are done");
 for (Enumeration enum = v.element(); enum.hasMoreElements();)
 System.out.println (enum.nextElement());

 // Suppose we wish to access the element in index 2 and output
 // five times its value
 double value = ((Double) v.elementAt (2)).doubleValue();
 System.out.println ("Five times the value at index 2 = " +
 5.0 * value);
 System.out.println ("index of -1.95 is " +
 v.indexOf (new Double (-1.95)));
 }
}

Output from Listing 2.12

10
true
-1.95
We are done
Five times the value at index 2 = -9.75
index of -1.95 is 2

Let us revisit the problem solved in Section 2.9. We wish to store the grades of students in a class and determine the
following statistics: highest grade, lowest grade, and average grade. Suppose further that the grades are held in an ASCII
file, one grade per line. The name of this file is grades.txt. We modify the solution given earlier.

Modified Design of Solution

1. Let us assume that we have loaded the raw data values into a Vector using wrapper objects of type Double (the raw
data will be input as type String and converted to Double).

2. To compute the highest grade we assume that the first element in the Vector is the largest (this will probably not be
true but it is just our initial assumption).

Page 47

3. We iterate through the enumeration of grades and compare each of the grades found to the largest. If we find a grade
(as we most probably shall) that is larger than the current largest grade, we replace the largest grade with the new grade
and continue our iteration through the enumeration of grades. When we have completed this iteration, we should have
the largest grade.

4. To compute the smallest grade we assume that the first element in the Vector is the smallest (again this will probably
not be true).

5. We again iterate through the grades and compare each grade found to the smallest. If we find a grade that is smaller
than the current smallest, we replace the current smallest with this new grade that is smaller. When we have completed
this iteration we should have the smallest grade.

6. To compute the average grade we must compute the total of all the grades and then divide this total by the number of
grades. We initialize a variable total of type double to zero.

7. We iterate through the scores and increment the variable sum. Upon the completion of the iteration we divide the sum
by the number of scores and output the mean.

Listing 2.13 presents the solution using Vector.

Listing 2.13 Class Grades

/** A class that manages the computation of several grading statistics
 * using Vector.
*/

import java.io.*;
import java.util.*;

public class Grades {

 // Fields
 private int numberGrades;
 private Vector v;

 // Constructor
 public Grades(String fileName) throws IOException {
 v = new Vector();
 BufferedReader diskInput = new BufferedReader(
 new InputStreamReader(
 new FileInputStream(
 new File (fileName))));
 // Load internal vector v with grades
 String line;
 line = diskInput.readLine();
 while (line != null) {

Page 48

 v.addElement (new Double(line));
 numberGrades++;
 line = diskInput.readLine();
 }
 }

 // Methods
 public double maximumGrade () {
 double largest = ((Double) v.firstElement()).doubleValue();
 for (Enumeration enum = v.elements(); enum.hasMoreElements();){
 double nextValue =
 ((Double) enum.nextElement()).doubleValue();
 if (nextValue > largest)
 largest = nextValue;
 }
 return largest;
 }

 public double minimumGrade () {
 double smallest = ((Double) v.firstElement()).doubleValue();
 for (Enumeration enum = v.elements(); enum.hasMoreElements();){
 double nextValue =
 ((Double) enum.nextElement()).doubleValue();
 if (nextValue < smallest)
 smallest = nextValue;
 }
 return smallest;
 }

 public double averageGrade () {
 double sum = 0.0;
 for (Enumeration enum = v.elements(); enum.hasMoreElements();){
 double nextValue =
 ((Double) enum.nextElement()).doubleValue();
 sum += nextValue;
 }
 return sum / numberGrades;
 }
}

2.12—
Summary

• An object is associated with a reference type – a class. It is more specifically an instance of a class.

• Memory for an object and its contents (field values) is allocated dynamically using the object creation operator new .

Page 49

• Before an object can be created it must be declared to be of a reference type.

• A class that implements the Cloneable interface may redefine the inherited clone method from Object . Its instances
may then be sent the clone message.

• The predefined equality operator returns true if the object references are identical. This is true only if there exist two
separate references to the same underlying storage as when aliasing occurs.

• Reference types include programmer-defined classes as well as the set of classes provided in the standard Java
libraries.

• The primitive types are not associated with a class and do not need to be created. They may be initialized at their point
of declaration.

• One of the most widely used Java classes is class String . This reference type is used to represent sequences of
characters.

• A StringBuffer object is not immutable, unlike a String object. A string buffer implements a mutable sequence of
characters.

• In Java, an array is an object and is represented by a reference type. Like all reference types an array must be created
before it can be used.

• A Vector can hold any number of elements, is dynamic, and is indexable; that is, one can insert or access information
at a specific index. A Vector is dynamic and automatically resizes itself if an insertion causes the number of elements to
exceed the current capacity.

• An Enumeration allows one to traverse through all of the elements of a Vector.

2.13—
Exercises

1 Write a complete Java application that inserts 100 random numbers, each a double from 0.0 to 100.0, in a Vector.
Output the second largest value in the vector. Also output the next to smallest value in the vector. Lastly, output all
values in the vector that contain numbers between 90 and 95.

2 Repeat Exercise 1 using an array.

3 Write a method isOrdered that returns a boolean and takes an array of double and size as inputs. If the values in the
input array are ordered from smallest to largest, the function returns true; otherwise it returns false.

4 Write a Java class TwoDimensionalArray that has the following properties:

a. Its constructor takes as its first parameter a two-dimensional array of type double (data) , as its second parameter
the number of rows (rows) , and as its third parameter the number of columns (cols). A two -dimensional array (data)
should be held as a private field of the class TwoDimensionalArray . The number of rows (rows) and number of
columns (cols) should also be held as private fields.

b. It has a method rowAverage that takes as input an int that represents the row number (from 0 to rows -1) and
returns the average value of the numbers in that particular row.

Page 50

c. It has a query function colAverage that takes as input an int that represents the column (from 0 to cols -1) and
returns the average value of the numbers in that particular column.

d. It has a query function overallAverage that returns the average of all the numbers in the two-dimensional array.

5 Write a test class (class TwoDimensionalTest) that:

a. Loads a two-dimensional array of 20 rows and 6 columns with random double values, each from 0 to 100.0.

b. Creates an instance of class TwoDimensionalArray and invokes the queries developed in Exercises 4b and c to
output to the console the average value of the numbers in row 0 and row 17 and the average value in column 0 and
column 4 of TwoDimensionalArray.

c. Invokes the query overallAverage() to return the average value of all the numbers n the two-dimensional array
sent in.

6 Given the string

String str = "123456789" ;

For the following questions write a single line of code.

a. Produce a new string by inserting the string ''ABC" between the 4 and 5 in the original string.

b. Produce a new string that is formed by taking all the characters between index 2 and 6, not including position 6,
in the string produced in part a.

Page 51

3—
Class Construction

Object-oriented software development is centered on the construction of classes. Classes represent a model of the
application domain. Object-oriented software analysis and design are preoccupied with the discovery of classes and the
relationships they have to each other. Through composition – in which one class holds one or more objects from other
classes – and inheritance, the architecture of a software system is defined. This architecture is ultimately realized at the
implementation phase by the construction and definition of classes.

This chapter closely examines the issues related to class construction using Java. Among the important issues to be
discussed are:

1. What responsibilities should be vested within a class?

2. What responsibilities should be vested with the user of a class?

3. How can we bind the user's responsibilities with the class's responsibilities?

4. How can we organize the behavior of a class in a systematic manner?

5. What naming conventions and documentation style should be employed in class construction?

6. How can and should one control the visibility and access to various features of a class?

3.1—
Responsibilities between a Class and Its Users – Design by Contract

Bertrand Meyer, perhaps more than any other writer, has clarified and influenced our thinking regarding the
responsibilities between a class and its users. His ideas are contained in his seminal work Object-Oriented Software
Construction , Second Edition (Prentice-Hall, 1997) and manifested in the Eiffel programming language and
environment. His concept of design by contract has become a staple part of the thinking and practice in this field.
Support for this concept has been embedded in many UML analysis and design tools. The Eiffel programming language
is perhaps the only language that fully implements the ideas associated with this elegant and powerful set of ideas. We
shall explore these ideas in this section and see how they may be applied when constructing Java classes.

It was Brad Cox, in his important book Object-Oriented Programming: An Evolutionary Approach (Addison-Wesley,
1986), who introduced the terminology

Page 52

of a software producer and consumer. The producer is responsible for constructing the features of a class, whereas the
consumer, the user of a class, is responsible for its correct usage. Other names have been used to express the same idea.
The terms ''client" and "server" have been used to characterize the user of a class (client) and the class itself (server).

Design by contract involves a partnership between the producer and consumer of a class and between the features
promised in the class and the responsibility of using these features correctly. If both parties adhere to this contract, the
resulting software has the potential to be more understandable and reliable.

Let us first focus on the features and promises in a class. Following the suggestions of Meyer, we classify features into
commands and queries. A command is a feature that may change the internal state of a class instance. It is typically
implemented as a method that does not return information – a function that returns void in Java. A query is a feature that
only returns information regarding the internal state of a class instance without changing this internal state. A query is
typically implemented as a method that returns information: a function that has a nonvoid return type in Java.

The totality of a class's commands and queries completely defines its behavior. In terms of design by contract, it is the
commands and queries that specify both the producer side and user side of the agreement. More precisely, each
command and query must state the requirements that must be met in order to assure the correct outcome of the method.
In addition, the command or query must state the conditions that will be guaranteed if the user requirements are met. In
short, if the user complies precisely with the requirements of the command or query, it in turn will assure the user that a
particular result shall be achieved.

The user requirements are given by a set of preconditions and the producer requirements are given by a set of
postconditions. The preconditions are typically provided as one or more constraints on the input parameters to the
command or query. The postconditions are usually provided in terms of the values of one or more fields.

In order for a precondition to have any validity it must be testable by the user. For example, if a precondition of popping
a stack object is that the stack is not empty, the user must be able to test the stack object for emptiness before invoking a
pop command. If this were not possible, the specification of a precondition would be quite useless since it is always the
responsibility of the user to test each and every precondition before invoking a command or query. This last sentence
raises an important organizational principle regarding coding practice.

Let us pursue the example of a stack structure since it provides an excellent example that illustrates these ideas.
Although Chapter 11 is devoted entirely to classes Stack and Queue, at the risk of a small amount of repetition, we shall
focus on details of a Stack here that pertain to class construction and design by contract in particular.

A Stack is a data abstraction that provides an orderly insertion and removal of objects from a container, the Stack .
Objects in a stack follow first-in, last-out logic so that the first object to be inserted into the Stack is the last object that
may be removed. The insert operation is specified by a command called push

Page 53

and the remove operation is specified by a command called pop. In addition to these two commands, a Stack also
provides a query, size, that returns the number of objects currently stored and another query, top , that returns the next
element that can be removed – the element that is said to reside on the top of the stack.

Let us consider the contract between the Stack supplier (producer) and Stack user in terms of each of the commands and
queries.

Command push (Object Obj)

There are no constraints on the type of object that can be inserted into a stack. If we assume that the stack has a huge
capacity, then we should impose no constraints on the number of objects that can be inserted. So in fact there are no
constraints of any kind that need to be met by the user. This is the type of contract that any user desires!

The producer, on the other hand, needs to satisfy an important constraint – namely, that the number of objects stored in
the stack after the push operation is exactly one greater than the number of objects stored in the stack before the push
operation. We represent this postcondition as follows:

size = old size + 1 size

Command pop()

This command removes the object that is currently on the top of the stack. One might therefore ask why is this a
command since a command cannot return anything? The answer is that pop is designed only to change the internal state
of the stack. If the value to be removed is desired, the top query should be invoked before invoking the pop command.

There is an important constraint on the user of pop, namely that stack is not empty. This is a constraint that can be tested
by the user since class Stack provides a size query. The producer needs to satisfy an important constraint as well –
namely, that the number of objects stored in the stack after the pop operation is exactly one less than the number of
objects stored in the stack before the pop operation. We represent this postcondition as:

size = old size - 1 size

You might be wondering, OK, what if the user fails to meet his or her obligation in ensuring that the stack is not empty
before invoking a pop command? The same question can be asked of failure to meet any precondition. The design-by-
contract answer to this question is that an exception must be thrown by the pop method and sent to the user's method that
invoked the pop command. If this user's method fails to handle the exception, the exception is propagated up the stack
call chain and if no method in this call chain handles this exception, the program will be aborted with an error message
indicating the source of the problem.

It must be emphasized that it is not the responsibility of the pop method to explicitly test for an empty stack before
proceeding with the removal of the top

Page 54

element. Many Stack classes have been constructed in which a control structure such as:

if size() > 0 {
 // Code to remove top element
}

is written. This is in complete violation of the design-by-contract principle in which the user, not the producer, is
responsible for ensuring that the stack is not empty.

One effect of placing the responsibility for such a test with the user (and this can be generalized to the construction of
any class based on design by contract) is the significant simplification of the code within the class. This is most desirable
since a well-designed class may serve as a reusable component available and used in a wide variety of applications.
Keeping such a class streamlined adds to the overall efficiency of the software development and reuse process. In
addition, by requiring the user to comply with one or more preconditions, this promotes a more engaged and intelligent
user since the user must better understand the details and function of the class before using it.

Query Object top()

The query top returns the object that is at the top of the stack. As with command pop, there is an important constraint on
the user of top – namely, that the stack is not empty. It does not make much sense to obtain an object that is not present.
We could adopt the protocol that top() returns a null object if the stack is empty. A possible problem with this approach
is that the query top may be embedded in a larger expression that attempts to take some action on the object that is
returned. For example, suppose that the objects stored in the stack are String objects. Consider the following expression:

int stringSize = ((String) stackObject.top()).length();

Here stackObject is an instance of Stack . The downcast operator (String) is needed since the formal type returned by top
() is Object . If stackObject has no elements and returns null, a NullPointerException shall be generated since length()
expects a non -null String object.

For consistency and adherence to the design -by-contract principle, we shall require a precondition that size > 0 for query
top. As with the other methods that have a precondition, if the user fails to meet the precondition, an exception shall be
thrown. There is never a postcondition associated with any query since the internal state of the class instance is not
changed by a query. In Java, pre - and postconditions are stated as comments associated with the relevant commands and
queries. These are backed up by appropriate exceptions. The details of class Stack are presented in the next section.

TE
AM
FL
Y

Team-Fly®

Page 55

3.2—
Organization of a Class

The features that define a class include fields (information content of a class instance), constructors (methods for object
creation and initialization), commands, queries , and private methods (methods that are called by the public commands
and queries but are not accessible outside the class). Although the sequence of presenting these features is arbitrary, we
shall usually follow the sequence given above.

Listing 3.1 presents an implementation of a Stack . The implementation closely follows the LinkedStack presented in
Chapter 11. The data structure details related to this important software component are discussed in Chapter 11. Here we
shall focus only on the class organization of Stack and not the data structure details.

Listing 3.1 Class Stack

/** A dynamic implementation of Stack
*/
public class Stack {
 // Fields
 private Node top = null;
 private int numberElements = 0;

 // Commands

 // Postconditions: size = old size + 1
 public void push (Object item) {
 Node newNode = new Node(item, top);
 top = newNode;
 numberElements++;
 }
 // Precondition: size > 0
 // Postcondition: size = old size - 1
 public void pop () {
 if (isEmpty())
 throw new NoSuchElementException
(''Stack is empty.");
 else {
 Node oldNode = top;
 top = top.next;
 numberElements--;
 oldNode = null;
 }
 }

 // Queries

 // Precondition: size > 0

Page 56

 public Object top () {
 if (isEmpty())
 throw new NoSuchElementException
(''Stack is empty.");
 else
 return top.item;
 }
 public boolean isEmpty () {
 return top == null;
 }
 public int size () {
 return numberElements;
 }
 private class Node {

 // Fields
 private Object item;
 private Node next;

 // Constructors
 private Node (Object element, Node link) {
 item = element;
 next = link;
 }
 }

There are two fields specified in class Stack: top and numberElements . These are both designated as private . There are
two commands, push and pop. The pre - and postconditions for each are shown. Finally, there is a private inner class
Node that is available only inside class Stack .

There is no explicit constructor in class Stack . The default constructor is sufficient in this case. The explicit
initializations shown in the two fields are not required. The default constructor would perform the same initialization.

3.3—
Packages

Packages provide a mechanism for physically grouping logically related classes into a common subdirectory. Packages
provide a mechanism for resolving name clashes if two or more classes have the same name. And finally, as we shall see
in the next section, packages provide controlled accessibility to the features of a class.

The Java class library is organized into a set of packages. Table 3.1 presents the packages not including Common object
request broker architecture (CORBA) related packages currently available in Platform 2 (Java 1.2). These may change
over time.

Each of the packages in Table 3.1 contains collections of classes related to the task indicated by the package name.

Page 57

Table 3.1 Packages in Java Version 1.2

java.applet java.security.acl

java.awt java.security.cert

java.awt.color java.security.interfaces

java.awt.datatransfer java.security.spec

java.awt.dnd java.sql

java.awt.event java.text

java.awt.font java.util

java.awt.geom java.util.jar

java.awt.im java.util.zip

java.awt.image javax.accessibility

java.awt.image.renderable javax.swing

java.awt.print javax.swing.border

java.beans javax.swing.colorchooser

java.beans.beanscontext javax.swing.event

java.io javax.swing.filechooser

java.lang javax.swing.plaf

java.lang.ref javax.swing.plaf.basic

java.lang.reflect javax.swing.plaf.metal

java.math javax.swing.plaf.multi

java.net javax.swing.table

java.rmi javax.swing.text

java.rmi.activation javax.swing.text.html

java.rmi.dgc javax.swing.text.html.parser

java.rmi.registry javax.swing.text.rtf

java.rmi.server javax.swing.tree

java.security javax.swing.undo

The package name indicates the subdirectory path that holds each collection of classes that define the package. For
example, the package javax.swing.text.html.parser is located in a subdirectory javax\swing\text\html\parser (forward
slashes if you are running under Unix). This subdirectory contains a set of classes that define this package.

Let us consider an example of utilizing a class in one of the Java packages, class Random . This class is quite important
in generating pseudorandom numbers and it will be utilized often in Part Two of the book. How might we access this
class and its features? Suppose that we wish to generate 1,000,000 random numbers, each uniformly distributed between
0 and 1, and compute the average value of the numbers generated.

Page 58

We need to first construct an instance of class Random using its constructor. Then each number is obtained using the
query method nextDouble() . Listing 3.2 presents a simple Java program that computes the average of 1,000,000 random
numbers.

Listing 3.2 Class RandomTest

public class RandomTest {

 public static void main(String[] args) {
 Random rnd = new Random();
 double sum = 0.0;
 for (int index = 0; index < 1000000; index++)
 sum += rnd.nextDouble();
 System.out.println
(''Average value = " + sum / 1000000.0);
 }
}

There is a problem with the code in Listing 3.2: It will not compile. The error message that is generated states: "class
Random not found in class RandomTest." Like most Java classes except for those in package java.lang, class Random
must be accessed through its package name. Listing 3.3 shows a modified class RandomTest that illustrates qualified
access to class Random . This class compiles and runs correctly.

Listing 3.3 Class RandomTest with Qualified Access

public class RandomTest {

 public static void main(String[] args) {
 java.util.Random rnd = new java.util.Random();
 double sum = 0.0;
 for (int index = 0; index < 1000000; index++)
 sum += rnd.nextDouble();
 System.out.println
("Average value = "+ sum / 1000000.0);
 }
}

The qualified name java.util.Random, used twice in class RandomTest , specifies precisely where the class is found.
Suppose that Random also existed in package java.fiction (such a package does not exist). If we wished to utilize the
fictional version of Random we could use the name java.fiction.Random .

You may now be wondering, "Is it worth having to use a qualified name for a class if only one such class exists in the
Java packages?" Before answering, it must be pointed out that you might wish to create your own version of class
Random and put it into your own package of classes. Then, even though only one version exists among the Java
packages, two versions exist in your system.

Java provides a way around the problem of having to use qualified names for a class that exists in only one package. The
import statement allows you to establish

Page 59

the location of a class once and then make unqualified access to it. Listing 3.4 presents a final version of class
RandomTest that uses such an import statement to allow unqualified access to class Random.

Listing 3.4 Class RandomTest with Unqualified Access to Class Random

import java.util.Random;

public class RandomTest {

 public static void main(String[] args) {
 Random rnd = new Random();
 double sum = 0.0;
 for (int index = 0; index < 1000000; index++)
 sum += rnd.nextDouble();
 System.out.println(''Average value = " + sum / 1000000.0);
 }
}

The two occurrences of Random in Listing 3.4 use the unqualified name. If we wish to have unqualified access to all of
the classes in a package we may use the wildcard "*". An example is:

import java.util.*;

When a class is defined as part of a package, the keyword package followed by the package name must appear as the
first noncomment line in the class definition. We illustrate the mechanics of defining classes as part of a package and
then accessing the classes with a simple tutorial example.

Consider the two classes, each named Greeting, given in Listings 3.5 and 3.6.

Listing 3.5 Class Greeting from Package One

package one;

public class Greeting {

 public static void main(String[] args) {
 System.out.println ("Greetings from package one");
 }
}

Listing 3.6 Class Greeting from Package Two

package two;

public class Greeting {

 public static void main(String[] args) {
 System.out.println("Greeting from package two");
 }
}

Page 60

On the author's computer, the file Greeting.java from Listing 3.5 is located in subdirectory e:\packages\one . The file
Greeting.java from Listing 3.6 is located in subdirectory e:\packages\two . The directory e:\packages is said to be the
root directory of the two packages since the subdirectories one and two are directly under this root directory. The root
directory in general is one level back from the package name.

How can we compile and run each of these packages? Compilation is done in the usual way from a command shell.
From subdirectory root\one, where root = e:\packages , invoke javac Greeting.java. The byte code file Greeting.class is
produced as expected. From the subdirectory root\two, invoke javac Greeting.java and the file Greeting.class shall be
produced.

To execute the file Greeting.class from package one, go to the root directory (e:\packages). From a command shell
invoke java one.Greeting. The program will run and output the appropriate greeting message.

To execute the file Greeting.class from package two, go to the root directory (e:\packages). From a command shell
invoke java two.Greeting. The program will run and again output the appropriate greeting message.

In general, to execute the code in a class that is part of a package, go to the subdirectory that is one back from the
package name. From a command shell invoke the virtual machine using java packageName.className.

As an alternative the user may establish an environment variable called classpath that includes the above root directory.
It is then possible to execute java one.Greeting and java two.Greeting from any directory. Still another alternative is to
include the classpath in the java command, for example, java -classpath e:\packages\one.Greeting.

If one has a set of classes residing in the same subdirectory, each with an unnamed package, a default package is
associated with each of the classes and they are considered to be in this same default package. In this case the root
directory is the same as the directory containing the classes with unnamed package. All of the rules to be described in
the next section pertaining to access modifiers pertain to such a default package.

In Part Two of this book we shall construct a package foundations that contains all of our data structure classes. The
classes in this package have been archived into a JAR (Java archive) file format and are available for your use.
Instructions regarding the installation and use of this JAR file are provided in Appendix C.

For further details regarding the mechanics of package use, the reader is urged to consult a Java programming book,
documentation, or reference.

3.4—
Access Modifiers

Java provides three explicit access modifiers: public, protected, and private , as well as a default package (blank
modifier) access. Each of these shall be described.

Class features (fields and methods) that are designated public are directly accessible inside as well as outside the class.
Typically only the commands and queries that define the behavior of class instances are declared public . These methods
form the basis for the messages that will be sent to instances of the class.

Page 61

Fields and methods that are designated protected are accessible inside the class and everywhere within classes in the
same package (default or explicit). These features are also accessible inside of all descendent classes. It is this latter
feature that typically justifies the use of the protected modifier. In most cases it is illogical to deprive a subclass of its
parent's features. Therefore it is recommended that fields and methods be designated as protected whenever you
anticipate that subclasses of the given class shall be defined.

We believe it is unfortunate that the protected access modifier provides package access, especially since this is provided
by the default package protection mechanism to be described below. We would much prefer that protected provide
access only to descendent classes and not classes within the same package.

Features that are designated private are accessible only inside the class in which these features are defined. This is the
most restrictive access modifier. We believe that in most cases private should be used only if one does not expect
subclasses to be formed from the given class and one wishes to deny other classes in the same package access to the
feature.

If no access modifier is specified for a field or method, the feature is said to have package visibility. This implies that the
feature is accessible inside of the class and everywhere within classes in the same package (default or explicit).
Subclasses (that are not in the same package) do not have access to features with package visibility.

3.5—
Naming Conventions

Over the years a de facto standard regarding the naming of classes and their features has evolved. We hasten to say that
there is not universal agreement regarding these conventions. There are examples of programming cultures that do not
adhere to these conventions.

We strongly recommend the following:

• Class names should always begin with an upper case character and be followed by mixed lower and upper case
when using a multiple-word identifier such as LandBasedVehicle.

• Field and method names should always begin with a lower case character and be followed by mixed lower and upper
case when using a multiple-word identifier such as myLandBasedVehicle .

• A command should be named as a verb or verb phrase. Examples include push, fireRocket, performComputation.
Using a verb phrase places the emphasis on the action to be performed.

• A query should be named as a noun or noun phrase. Examples include top, speed, rocketWeight. If a query returns
a boolean value, a phrase starting with ''is" might be considered. Examples include isEmpty, isFull, and isCorrect.

It is noted that a common naming style in Java is to start a query with "get." Examples would include getSize or
getRocketWeight. For Java Beans it is a requirement. Here the focus is on the process of obtaining the information rather

Page 62

than the nature of the information being sought. If all queries start with ''get," this action phrase conveys no new
information. We prefer putting the focus on the information being sought by using a noun or noun phrase.

3.6—
Summary

• Object-oriented software development is centered on the construction of classes.

• Classes represent a model of the application domain. Object-oriented software analysis and design are preoccupied
with the discovery of classes and the relationships they have to each other.

• Through composition – in which one class holds one or more objects from other classes – and inheritance, the
architecture of a software system is defined. This architecture is ultimately realized at the implementation phase by the
construction and definition of classes.

• Design by contract involves a partnership between the producer and consumer of a class, and between the features
promised in the class and the responsibility of using these features correctly. If both parties adhere to this contract, the
resulting software has the potential to be more understandable and reliable.

• A command is a feature that may change the internal state of a class instance. It is typically implemented as a method
that does not return information – a function that returns void in Java.

• A query is typically implemented as a method that returns information – a function that has a nonvoid return type in
Java.

• The totality of a class's commands and queries completely defines its behavior. In terms of design by contract, it is the
commands and queries that specify both the producer side and user side of the agreement.

• Each command and query must state the requirements that must be met in order to assure the correct outcome of the
method. In addition, the command or query must state the conditions that will be guaranteed if the user requirements are
met. In short, if the user complies precisely with the requirements of the command or query, it in turn will assure the
user that a particular result shall be achieved.

• In order for a precondition to have any validity it must be testable by the user.

• The features that define a class include commands, queries, and private methods.

• Packages provide a mechanism for physically grouping logically related classes into a common subdirectory, a
mechanism for resolving name clashes if two or more classes have the same name, and controlled accessibility to the
features of a class.

• In general, to execute the code in a class that is part of a package, go to the subdirectory that is one back from the
package name or use the classpath variable to point the virtual machine to your package directory. From a command
shell invoke the virtual machine using java packageName.className.

Page 63

3.7—
Exercises

1 A Counter is a class defined by the following commands and queries:

Commands
reset – sets the Counter's value to zero.
increment – adds one to the current Counter's value.
decrement – subtracts one from the current Counter's value.

Queries
countValue – the current integer value held by the Counter.

a. State all the preconditions and postconditions for each of the commands and queries if applicable.
b. Implement class Counter in Java.

2 Describe three of the classes in package java.util by dividing their methods into constructor, commands, and queries. If
possible, write preconditions and postconditions as comments.

3 Do the same as Exercise 2 for package java.io.

4 Create a class of your own choosing. State the purpose of the class. Partition the methods of the class into constructors,
commands, and queries. For each command and query, state any applicable pre - or postconditions.

Page 64

4—
Relationships between Classes

We examine two important types of relationships between classes in this chapter – namely, composition and
inheritance. We illustrate the concepts by constructing a complete software system in Java that illustrates the use of
these two types of relationships.

4.1—
Inheritance

Inheritance, as the name implies, involves the transmittal of behavioral characteristics from parent class to child class.
Through inheritance one can establish behavior in a base class that is available and directly usable in a hierarchy of
descendent classes that extend the base class.

As discussed in Chapter 1, inheritance can be centered on factoring and reusing methods (implementation inheritance) or
on extending behavior (behavioral inheritance). It is the latter that we shall utilize in this chapter and throughout this
book.

With behavioral inheritance, it is essential that any child class logically be of the same type as its parent. As you recall
from Chapter 1, the principle of polymorphic substitution allows a descendent class to be used in place of its ancestor.
This would make sense only if each child class can logically be considered to be a kind of its parent.

A child class may extend a parent class by introducing one or more fields or methods not found in the parent or by
redefining one or more parent class methods. Although some object-oriented languages provide facilities for a child
class to block some of its parent's fields or methods, this violates the logical basis of polymorphic substitution since the
child class could no longer be considered to be of the same type as its parent. We shall avoid such usage and encourage
you to do the same.

It should be clear from the above description that as one moves down a class hierarchy, behavior becomes more and
more refined and fine grained. Classes at the bottom of the hierarchy typically contain more fields and methods than
classes near the top of the hierarchy.

It must be emphasized that one does not justify inheritance by simply counting the number of fields or the number of
methods and comparing child class to parent class. A classic example of such an error in reasoning would be to argue
that class Rectangle is a subclass of Square because Rectangle has two fields, length and width , whereas Square has only
one field, width. This does not make sense because

TE
AM
FL
Y

Team-Fly®

Page 65

a Rectangle is not a kind of Square . It would not make sense to have a Rectangle object stand in for a Square object
under polymorphic substitution. It would also be difficult to explain to a fifteen-year-old that a rectangle is actually a
kind of square. It would be easier to justify that the parent of a fifteen -year-old is kind of square!

The challenge in using inheritance properly is to use it wisely. Because a programming language allows you to make any
class a subclass of any other class does not justify undisciplined use of this facility. Through inheritance a strong
dependency is established between parent class and child class. Strong dependencies need to be carefully justified.

The notation for depicting an inheritance was shown in Figure 1.1. A broad-headed arrow connects the child class (tail)
to the parent class (head).

4.2—
Composition

A common association between classes is provided by the composition relationship. The composition relationship is a
whole-part relationship. One class representing the whole defines fields that represent the parts. At the object level this
relationship implies the following: A whole object is composed of one or more constituent part objects. If these
constituent objects are an essential part of the whole, have a lifetime roughly equivalent to the whole, and are not shared
with other objects, we call the association strong aggregation. If the constituent objects are essential to the whole but
have a lifetime independent of the whole, the association is a weak or reference aggregation .

Figure 4.1 shows strong and weak aggregation relationships among several classes as well as inheritance relationships.
In the UML diagram of Figure 4.1, class Car is a subclass of MotorVehicle. It acquires the general properties defined in
the abstract classes MotorVehicle, LandBased, and Vehicle, as well as introducing specialized properties of its own.

Car is shown as having a strong aggregation relationship to a single instance of class Engine . The implication is that an
engine is an essential part of a car, is not shared by other cars, and has a lifetime roughly equivalent to that of the car. A
solid diamond shows strong aggregation.

Figure 4.1.
Relationships between Car and other classes.

Page 66

Car is also shown as having a weak aggregation or reference relationship with class SatelliteNavigationSystem. The
implication is that an instance of SatelliteNavigationSystem has a lifetime of its own and may be shared by many cars
(i.e., many cars may communicate independently using the satellite navigation object).

Association through composition is a natural relationship among classes because there are countless examples of
composite objects in the world around us. Inheritance, by its very nature, creates a somewhat artificial model of the real
world. For example, although it makes perfect sense for a car to be considered a kind of MotorVehicle there is no real
object of type MotorVehicle. The latter is an intellectual abstraction, albeit a most useful one. Similar statements may be
made for the other ancestor classes of Car.

Let us examine the skeletal code of class Car to see how the two types of relationships shown in Figure 4.1 are
represented in Java code. Listing 4.1 shows the skeletal code of class Car.

Listing 4.1 Skeletal Code for Class Car

class Car extends LandBasedVehicle {

 // Fields
 private Engine engine;
 private SatelliteNavigationSystem navigation;

 // Constructors
 public Car (SatelliteNavigationSystem navigate) {
 engine = new Engine();
 navigation = navigate;
 // Other code not shown
 }

 // Other code not shown
}

The responsibility for creating an instance of SatelliteNavigationSystem lies outside of class Car. An instance of this
class is passed to the constructor so that an internal reference to such an object is held as a field in class Car. This is
weak aggregation.

The responsibility for creating an instance of class Engine lies totally within class Car. This is strong aggregation. This
is shown in the constructor.

4.3—
Class Relationships in Action – A Case Study

To bring some of these ideas alive, we model and implement a simple simulation
game.

Page 67

4.3.1—
Specifications

We wish to simulate a race among four players. The players move in sequence starting with player 1 and ending with
player 4. On each ''move" a player goes forward or backwards depending on his or her score for the move. A positive
score for a move implies a forward move, whereas a negative score implies a backward move. As players move in
sequence, the first player to move forward 500 or more units wins and the game is over.

The score a player receives on each move is determined by:

1. The outcome of the throw of a fair die.

2. The relative position of the player that is moving with respect to the other players.

3. The response logic associated with the given player. There are three distinct types of response logic that are possible.
Each player is associated with one of the three possible types of response logic. More than one player may have the
same type of response logic. At random times, the same or one of the other two types of response logic replaces a
player's response logic.

It is the response logic associated with a player that determines how the die outcome and relative position of the other
players affects the given player's score and move. The details related to the three types of response logic are given
below.

Response Type 1

If a player's move is based on response type 1, its change in position is computed as:

die throw + (position of leading player – player's position) / 2

If the die throw is 3, 4, 5, or 6 the change in position is positive; otherwise it is negative.

Response Type 2

If a player's move is based on response type 2, its change in position is computed as:

3 times the die throw if the dice throw is an even number; otherwise the die throw if the die throw is an odd
number

The change in position is always positive.

Response Type 3

If a player's move is based on response type 3, its change in position is computed as:

die throw + (player's position – position of trailing player) / 2

If the die throw is 1 or 2, the change in position is positive; otherwise the change in position is negative.

Page 68

A player is associated with a particular response type for a random number of moves uniformly distributed between 2
and 5 moves. When the lifetime of a response associated with a given player has expired, a new response type among
the three is chosen with an equal likelihood of each. At the same time, a new response life is chosen (between 2 and 5
moves).

As the race between players progresses and after each player's move, a line of output should be sent to the console that
specifies the player number and its current position. When the game is over, a final line of output should be written to
the console that indicates the winner of the game.

4.3.2—
Analysis and Design

From the specifications we identify six classes. These are listed below with a brief description of the responsibilities of
each class.

Domain Classes

Game – Owns and controls the four players and random number generator and is responsible for managing their
overall play.

Player – Holds a particular response type for a limited lifetime. Each player is responsible for knowledge of its own
position.

Response – An abstract class that computes the change in position for a player based on the positions of the other
players and the dice throw.

Response Type 1, 2, 3 . Concrete response classes that compute the change in position for a player based on rules given
in Section 4.3.1.

We discuss more details for each of the classes before attempting to establish the relationships they have to each other.

Class Game

Class Game owns and is responsible for creating all the Player objects. Since the Game also requires a random number
object, it is responsible for creating this object. Therefore, class Game has a strong aggregation relationship with one or
more players and a Random number object (i.e., strong aggregation with respect to classes Player and Random).

Game is responsible for assigning a new Response object to a player whenever its response life is zero. This action, as
well as the control of the game, is established in a play method that controls the flow of the game.

Class Player

A player must know its response life, its position, and its player number. These become scalar attributes of the class.

A player is always associated with a Response object passed to it by the Game . Since it does not own the Response
object, class Player has a reference relationship with respect to class Response.

A player is responsible for updating its response life whenever it is assigned a new Response object. To do this requires
the use of a random number. Therefore

Page 69

class Player has a reference relationship with class Random. An instance of Random is passed to Player in its
constructor and held as a field. This ensures that only one random number object is created and used throughout the
application.

One of the important methods of Player is makeMove . This method determines the new position of the Player .

Abstract Class Response

Abstract class Response holds a reference to an array of Player objects. This array is passed to a Response object when it
is created. A Response object must also hold the number of the player associated with it as well as the number of players
in the array.

The abstract method changeInPosition must be implemented by each of the three concrete Response subclasses
according to the rules given in the game specification.

Based on the descriptions given above, the UML diagram in Figure 4.2 depicts the relationship among the six classes
that define the architecture of this application.

Explanation of Figure 4.2

The associations with a dark diamond attached to Game and an arrow attached to Random and Player indicate strong
aggregation relationships with classes Player and Random. The arrows indicate that Game has access to Random and
Player but Random and Player do not have access to Game . A Game object (the whole) is responsible for creating
Player objects and a Random object, the parts.

Figure 4.2.
UML class diagram for race simulation game.

Page 70

Class Player is shown as having a reference relationship with Response and Random , each with multiplicity 1. Class
Response is shown as having a reference relationship with class Player of multiplicity 1 or more. This implies that each
concrete Response object has knowledge of the Player objects. This information is provided at initialization time
through a constructor.

The three concrete Response type classes are shown as subclasses of Response . Each has its own changeInPosition
method. The fields and methods of each class are also shown in Figure 4.2.

4.3.3—
Implementation

Abstract class Response is presented in Listing 4.2.

Listing 4.2 Abstract Class Response

/**
 * Abstract class that models change in position
*/
public abstract class Response {

 // Fields
 protected Player [] players; // The players in the game
 protected int numberPlayers; // Number of players in the game
 protected int playerNumber; // Player associated with Response

 // Constructor
 public Response (Player [] players, int numberPlayers,
 int playerNumber) {
 this.players = players;
 this.numberPlayers = numberPlayers;
 this.playerNumber = playerNumber;
 }

 // Queries
 /**
 * Returns the player's change in position based on move
 */
 public abstract int changeInPosition(int dieThrow);
}

Instances of class Response are not allowed since it is an abstract class. The abstract method changeInPosition is-*+9
defined in each of the concrete subclasses. All concrete subclasses of Response inherit knowledge of the array of
players, the number of players, and the particular player number associated with the Response object through the fields
defined in class Response . Listings 4.3, 4.4, and 4.5 present the three concrete subclasses of Response .

Page 71

Listing 4.3 Class TypeOneResponse

public class TypeOneResponse extends Response {

 // Constructor
 public TypeOneResponse (Player [] players, int numberPlayers,
 int playerNumber) {
 super (players, numberPlayers, playerNumber);
 }

 // Queries
 public int changeInPosition(int dieThrow) {
 // Compute highest position
 int highest = players[1].position();
 for (int i = 2; i <= numberPlayers; i++)
 if (players[i].position() > highest)
 highest = players[i].position();
 int change = dieThrow + (highest -
 players[playerNumber].position()) / 2;
 return (dieThrow > 2) ? change : -change;
 }
}

In the query changeInPosition of class TypeOneResponse, the highest position is assumed to be associated with player 1.
The loop that follows replaces the highest position with the position of any of the other players if their position is greater
than the current highest position. Natural indexing is used in the array of players; therefore the upper limit on the loop is
numberPlayers, an attribute of abstract class Response that is inherited.

The last line of code in query changeInPosition returns a positive change in position if the die throw is greater than 2;
otherwise it returns a negative change in position as given by the problem specifications.

Listing 4.4 Class TypeTwoResponse

public class TypeTwoResponse extends Response {

 // Constructor
 public TypeTwoResponse (Player [] players, int numberPlayers,
 int playerNumber) {
 super (players, numberPlayers, playerNumber);
 }

 // Queries
 public int changeInPosition(int dieThrow) {
 return (dieThrow % 2 == 0) ? 3 * dieThrow : dieThrow;
 }
}

Page 72

The change in position returned by changeInPosition in class TypeTwoResponse is dependent only on the die throw and
is not dependent on the position of the other players.

Listing 4.5 Class TypeThreeResponse

public class TypeThreeResponse extends Response {

 // Constructor
 public TypeThreeResponse (Player [] players, int numberPlayers,
 int playerNumber) {
 super (players, numberPlayers, playerNumber);
 }

 // Queries
 public int changeInPosition(int dieThrow) {
 // Compute lowest position
 int lowest = players[1].position();
 for (int i = 2; i <= numberPlayers; i++)
 if (players[i].position() < lowest)
 lowest = players[i].position();
 int change = dieThrow +
 (players(playerNumber].position() - lowest) / 2;
 return (dieThrow > 2) ? -change : change;
 }
}

The logic of method changeInPosition in class TypeThreeResponse is similar to class TypeOneResponse . Here the
lowest position is computed. A negative change in position is returned if the die throw exceeds 2; otherwise a positive
change in position is returned as required in the specifications.

Listings 4.3, 4.4, and 4.5 demonstrate that each of the concrete Response classes provides a specific definition of the
query changeInPosition. Listing 4.6 presents the details of class Player .

Listing 4.6 Class Player

/**
 * Models each player
*/

public class Player {

 // Fields
 private int position = 0;

Page 73

 private int playerNumber;
 private Response response;
 private int responseLife;
 private java.util.Random rnd;

 // Constructor
 public Player (int number, java.util.Random rnd) {
 this.rnd = rnd;
 playerNumber = number;
 }

 // Commands
 public void assignResponse (Response response) {
 this.response = response;
 responseLife = 2 + rnd.nextInt (4);
 }

 public void makeMove (int dice) {
 responseLife--;
 position += response.changeInPosition(dice);
 }

 // Queries
 public int responseLife () {
 return responseLife;
 }

 public int position () {
 return position;
 }

 public boolean wins() {
 return position >= 500;
 }

 public int playerNumber() {
 return playerNumber;
 }
}

The makeMove command decrements the attribute responseLife and then assigns a change in position based on the query
changeInPosition sent to the Response object associated with the Player. This is a form of delegation in which the
responsibility for computing a new position is transferred from a Player object to the Response object associated with
the Player.

Finally, Listing 4.7 presents the details of class Game .

Page 74

Listing 4.7 Class Game

/**
 * Game class that holds the players and initiates action
*/

public class Game {

 // Fields
 private Player [] players = new Player[5]; // Use natural
 indexing private java.util.Random rnd = new java.util.Random();
 private int numberPlayers;

 // Constructor
 public Game (int numberPlayers) {
 this.numberPlayers = numberPlayers;
 // Warm up random number generator
 for (int i = 0; i < 50000; i++)
 rnd.nextDouble();
 // Create four Player objects
 players[1] = new Player(1, rnd);
 players[2] = new Player(2, rnd);
 players[3] = new Player(3, rnd);
 players[4] = new Player(4, rnd);

 // Assign random Response type to each player
 for (int playerNumber = 1; playerNumber <= numberPlayers;
 playerNumber++)
 assignRandomResponse(players[playerNumber]);
 }

 // Command
 public void assignRandomResponse (Player player) {
 // Assign a random Response object to specified player
 switch (1 + rnd.nextInt(3)) {
 case 1: // Player gets TypeOneResponse
 player.assignResponse(new TypeOneResponse(players,
 numberPlayers, player.playerNumber()));
 break;
 case 2: // Player gets TypeTwoResponse
 player.assignResponse(new TypeTwoResponse(players,
 numberPlayers, player.playerNumber()));
 break;
 case 3: // Player gets TypeThreeResponse
 player.assignResponse(new TypeThreeResponse(players,
 numberPlayers, player.playerNumber()));
 break;
 }
}

TE
AM
FL
Y

Team-Fly®

Page 75

 public void play () {
 int playerNumber = 0;
 do {
 playerNumber++;
 if (playerNumber > numberPlayers)
 playerNumber = 1;

 if (players[playerNumber].responseLife() == 0)
 assignRandomResponse(players[playerNumber]);

 players[playerNumber].makeMove(1 + rnd.nextInt(6));
 System.out.println (''Player " + playerNumber +
 " position: " + players[playerNumber].position());
 } while (!players[playerNumber].wins());
 System.out.println("\n\nPlayer " + playerNumber +
 " wins the game.");
 }

 public static void main(String[] args) {
 Game game = new Game(4);
 game.play();
 }
}

Function main creates a new Game object passing the number of players as a parameter. The constructor in class Game
warms up a random number generator, creates the four players, and assigns a random response object to each player.
Recall that class Player has a reference relationship to class Random . The play command is sent to the Game object. A
do-while loop controls the game and terminates when one of the players returns the value true to the query wins. Within
the loop, playerNumber is incremented and is reset to 1 when its value exceeds the number of players. If the response
life of a player is 0, it is assigned a new Response. The die value is computed and passed as a parameter to the
makeMove command. The play command manages the overall control of the game. A do-while loop in this method
controls the process. The loop continues until a player returns true to the query wins() .

4.4—
Summary

• Inheritance, as the name implies, involves the transmittal of behavioral characteristics from parent class to child class.
Through inheritance one can establish behavior in a base class that is available and directly usable in a hierarchy of
descendent classes that extend the base class.

• A child class may extend a parent class by introducing one or more fields or methods not found in the parent or by
redefining one or more parent class methods.

Page 76

• Through inheritance a strong dependency and association is established between parent class and child class. Strong
dependencies need to be carefully justified.

• The composition relationship is a whole/part relationship. One class representing the whole defines fields that represent
the parts.

• A strong aggregation relationship implies that the class representing the whole owns and is responsible for creating
each of its aggregate parts. The aggregate parts cannot be shared among other objects.

• A weak aggregation or reference relationship implies that the class representing the whole shares its aggregate parts
possibly with other objects. These aggregate part objects have a life and identity of their own.

• A UML class diagram shows the relationships among the classes that define a system. The fields as well as methods of
each class are depicted for each class.

• Inheritance is shown on a UML diagram with a broad-headed arrow going from the subclass to its parent.

• Strong aggregation is shown on a UML diagram with a diamond attached to the whole and a line connecting to the part
class.

• A reference relationship is shown on a UML diagram with a line connecting the whole to the part class.

4.5—
Exercises

1 Using a UML diagram show the use of inheritance in a problem domain that you should describe briefly. Justify each
of the relationships between classes.

2 Using a UML diagram show the use of composition in a problem domain that you should describe briefly. Justify each
of the associations between classes.

3 Using a UML diagram show the combined use of inheritance and composition in a problem domain that you should
describe briefly. Justify each of the relationships between classes.

4 Modify the Game simulation presented in this chapter as follows:

a. Add two more players. Players continue to move in sequence.

b. Add one more concrete Response class. You are free to invent whatever rule you wish for this new Response
class. Precisely state the rules for this new class.

c. Modify the UML diagram so that it shows the changes you have made.

d. Completely implement the new game.

Page 77

5—
GUIs:
Basic Concepts

Most modern software presents a GUI (graphical user interface) for interaction with the user. The GUI typically appears
as a window with a variety of widgets (visual components enabling user interaction) in it. These widgets provide
information to the user and provide a mechanism for accepting user actions to direct the application. Prior to the
Windows revolution, most software was executed from a console using text commands with output in textual format as
well. It is our goal to provide the reader with essential knowledge for understanding, designing, and implementing
simple GUI applications. In this chapter we present the basic concepts that underlie GUI programming. An overview is
given of Java classes that support GUI applications, including those classes that are part of the AWT (abstract
windowing toolkit) and the JFC (Java foundation classes). Also in this chapter we present conceptually the design
pattern called MVC (model view controller). Implementation in Java of GUI applications and MVC is covered in
Chapter 6.

In discussing the operation of a GUI application we may choose one of two points of view: (1) that of the user, or (2)
that of the application. As a user we clearly focus on the first point of view; whereas, the developer of a GUI application
must focus on both points of view. In that spirit we develop a description of the roles, expectations, and responsibilities
of the two major players: user and application.

A GUI application is designed so that most of the actions it performs are directed by the user. It is the role and
responsibility of the application to present to the user clear options on possible actions and results of those actions. It is
the expectation of the user that all actions are implemented correctly by the application. Verification of the results of an
action may also be an expectation.

It is the responsibility of the user to understand what an application can and cannot do and to use the application
appropriately. However, many applications are designed to be tolerant of misuse. Through exceptions an application has
a number of options on how to respond to misuse. Exception and error handling is covered in more detail in Chapter 7.

5.1—
The Graphical Part of a GUI Application

In this section we define the major players that make a graphical user interface graphical. These major players are
objects and are well represented by a wide

Page 78

Figure 5.1.
An empty top-level window – instance of javax.swing.JFrame .

variety of classes in the Java platform.1 We may identify these graphical objects as: (1) top-level window that contains
all graphical elements of the application, (2) widgets (or components) that accept input from the user and/or display
information to the user, and (3) a graphics context that is responsible for all drawing within the application window.
Each of these graphical objects is described in more detail below with an overview of supporting Java classes.

The Top Window of an Application

Every GUI application needs an identifiable visual boundary. The top-level window provides that boundary. This
window contains all the components that are part of the interface with the user. Associated with the top window is a
layout manager (may be null) that provides methods for positioning and sizing components within the window. If the
layout manager is null, then the GUI builder may take direct control of the sizing and positioning of components within
the top -level window; in many cases this is the best choice.

Top-level windows in Java are instances of java.awt.Frame or javax.swing.JFrame. These windows have a border, a
title bar, and optional components such as a menu bar and toolbars. An example top-level window (instance of
javax.swing.JFrame) is shown in Figure 5.1. It is a window with a border, a title ''Basic Elements of a JFrame," a menu
bar with File and Help menus, and a toolbar with three buttons. Components (widgets) may be added to the blank area
of the window below the toolbar.

Class java.awt.Container represents generic windows that can contain other AWT, JFC, or custom components
(widgets). It has methods that are applicable to all its subclasses. Selected details for top-level window and container
classes are shown in Figure 5.2.

1 For a more detailed discussion of the Java AWT, the reader is referred to any of the numerous books on the Java language.

Page 79

Figure 5.2.
Selected details of top-level windows and containers.

Both top-level windows Frame and JFrame are subclasses of Container . A Panel is a simple container that may be used
inside another container to organize components. Container is a direct subclass of Component (not shown in the figure).
In Part Two we will define a different kind of container (one that contains objects) as an interface.

The Components – Communication between the Application and the User

Most widgets in Java are subclasses of java.awt.Component , including all AWT components (except for menus) plus all
JFC components. All components have a parent field that is a Container . The parent may be the top-level window or
any other Container subclass instance. The JFC components (unlike most AWT components) are instances of Container
subclasses and may contain other components. Typical components include buttons, text fields, labels, checkboxes,
radio buttons, and others. Components respond to messages that set their size and position within their parent container.
Other selected details for class Component (a subclass of Object) are shown in Figure 5.3.

The Graphics Context

Drawing is an important function for all user-interface components. For consistency, a separate helper object in Java,
which is an instance of class java.awt.Graphics, handles all drawing. In an object-oriented design we often delegate
responsibility for complex tasks to a new object, called a helper object. Each Component has a graphics helper object
that may be accessed by using the query

Component

(from java.awt)

- parent : Container

+ getBounds() : Rectangle

+ getFont() : Font

+ getFontMetrics() : FontMetrics

+ getGraphics() : Graphics

+ getLocation() : Point

+ getSize() : Dimension

+ setBounds(r : Rectangle) : void

+ setBounds(x : int, y : int, width : int, height : int) : void

+ setFont(f : Font) : void

+ setLocation(x : int, y : int) : void

+ setSize(x : int, y : int) : void

+ setVisible(boolean) : void

+ paint(g : Graphics) : void

+ print(g : Graphics) : void

+ repaint() : void

+ update(g : Graphics) : void

+ . . . ()

Figure 5.3.
Selected details of abstract class Component.

getGraphics(). Commands may then be sent to this graphics object to draw text, lines, and shapes on the component. Figure 5.4 shows some of the drawing
commands supported by the Java Graphics class. Examples showing the use of class Graphics are given in later chapters.

Graphics

(from java.awt)

+ copyArea(x : int, y : int, width : int, height : int, dx : int, dy : int) : void

+ drawArc(x : int, y : int, width : int, height : int, startAngle : int, arcAngle : int) : void

+ drawLine(x1 : int, y1 : int, x2 : int, y2 : int) : void

+ drawRect(x : int, y : int, width : int, height : int) : void

+ drawOval(x : int, y : int, width : int, height : int) : void

+ drawPolygon(xPoints : int[], yPoints : int[], nPoints : int) : void

+ drawPolyline(xPoints : int[], yPoints : int[], nPoints : int) : void

+ drawRoundRect(x : int, y : int, width : int, height : int, arcWidth : int, arcHeight : int) : void

+ drawString(str : String, x : int, y : int) : void

+ drawImage(img : Image, x : int, y : int, observer : ImageObserver):

+ fillArc(x : int, y : int, width : int, height : int, startAngle : int, arcAngle : int) : void

+ fillRect(x : int, y : int, width : int, height : int) : void

+ fillOval(x : int, y : int, width : int, height : int) : void

+ fillPolygon(xPoints : int[], yPoints : int[], nPoints : int) : void

+ fillRoundRect(x : int, y : int, width : int, height : int, arcWidth : int, arcHeight : int) : void

+ fillPolygon(p : Polygon) : void

+ setFont(font : Font) : void

+ setColor(c : Color) : void

+ . . . ()

Figure 5.4.
Selected details of class java.awt.Graphics .

Page 81

Figure 5.5.
Associations among the primary GUI classes in Java.

Associations among the Primary GUI Classes

There are a number of important associations among the classes that are part of the Java model for GUIs. These
associations are shown in Figure 5.5.

There are three connections between Component and Container. Container extends Component (a container is a
component). Container has a field called components[] that is an array of Component objects. Finally, Component has a
field called parent that is an instance of Container . All components have a parent container, except the top -level
windows (instances of Frame or JFrame) which have a null value for parent. All components have a Graphics helper
object for drawing and have the ability to be sized and positioned within their parent container.

These circular relationships between Component and Container can be confusing; however, they are an elegant example
of the richness provided by a good object-oriented design. Many of the Container subclasses represent objects that can
be components in another container. For example, a Frame object (aFrame) may contain a Panel object (aPanel) that
contains a Button object (aButton) and a TextField object (aTextField). From this simple example we get the following
hierarchical structure.

Page 82

• Object aFrame contains aPanel and is the parent of aPanel. The components[] array of object aFrame contains object
aPanel. Object aFrame has a null value for parent (i.e., no parent).

• Object aPanel has parent aFrame. It contains and is the parent of objects aButton and aTextField. The components[]
array of aPanel contains objects aButton and aTextField.

• Objects aButton and aTextField have the same parent, aPanel. Neither of these objects can be containers.

The combinations of containers and components that may be designed with the Java AWT and JFC are limited only by
one's imagination.

The Java 2 Platform provides a rich variety of components for use in a user interface. Included are classes in the AWT
(indicated by Other Components , with the ellipsis, in Figure 5.5) and a much larger set of classes in the JFC (indicated
by Other JComponents , with the ellipsis, in Figure 5.5). Supporting classes such as Font, Color , and Image shown in
Figure 5.5 provide useful services for customizing the appearance of a component.

This brief introduction only scratches the surface of the rich collection of classes in the Java platform for supporting
graphical user interfaces. An increasing number of third-party components are also available.

5.2—
Events – Making Communication Work

Events are the mechanism by which a user directs the actions of a GUI application. A large and increasing number of
software applications are event driven. Event -driven applications may be characterized by a need to respond to
asynchronous external actions. The timing and sequence of these actions are not known a priori by the application.
External actions may be initiated by a person using the application (through a user interface), by another application, by
the operating system, or by hardware devices attached to the computer. We need a consistent, logical, and efficient way
to capture these external actions so the event-driven application can respond appropriately.

As a starting point we define what is meant by an event. If we check the definition of event in the dictionary2 we find:

event – n. 1. something that happens or is regarded as happening; an occurrence, esp. one of some importance, 2. the
outcome, issue or result of anything; consequence.

So event is a noun and it is something that happens, typically as the result of some action or set of conditions. This leads
to our first step in decomposing and understanding events. We distinguish the cause of an event (the source) from the
event itself. The event is the result of some behavior by the source. The next step in our decomposition of events is to
realize that events are intended to invoke

2 Abstracted from Webster's College Dictionary, Random House, New York, 1995.

Page 83

some response (even if the response is to ignore the event). So we distinguish the event from a response to the event. If
an object is to respond to an event it must be notified that the event has occurred. This approach leads to a description of
events involving several players with specific roles and responsibilities. In the next section we present a simple example
using events. We then correlate the example with and expand upon the features already defined for events – source,
event, notification, and response.

5.2.1—
Features of Event -Driven Applications

We first illustrate the features of events with a simple nontechnical example. Then we define the terms used to describe
events and event handling.

5.2.1.1—
A Simple Event-Driven Example

Suppose you are enrolled in a class and the instructor has promised to periodically provide helpful key information for
doing well on exams. Based on perceived needs of the students, coupled with goals for the class and progress toward
those goals, the instructor will decide the content and timing of any new information made available. The instructor
promises to post such information on a Web page and to notify students.

As the term progresses we look at a possible scenario. Based on student performance in completion of a particular
homework assignment and questions raised in class, the instructor decides to create supplementary notes, post them on
the Web page, and notify students. Students may then access, download, and study the notes.

This simple example has all the features of an event -driven application. If we break down the scenario into a more
formal description, we get a better idea of the precise steps involved in this simple task.

1. A set of actions (student performance on homework assignment) and conditions (perceived student misunderstanding
of concepts) lead the instructor to create a set of supplementary notes. We may characterize the actions and conditions as
a threshold phenomenon that leads to a binary decision to create notes. The act of creating the notes is the event. The
instructor is the source of the event.

2. Once completed, the notes are posted on the Web page following a sequence of steps. If these steps are done
correctly, the instructor receives confirmation that the notes are in fact on the Web page and available for download.
This confirmation may be taken as a signal back to the instructor to notify students about the new notes. Notifying the
students of the event (creation of notes) is the responsibility of the instructor (the source).

3. Before we talk about response, it is important to discuss briefly the responsibilities of the instructor and students as
part of the notification process. As stated in step 2, it is the responsibility of the instructor to notify students of the event.
Making an announcement in class typically does this. A student must be

TE
AM
FL
Y

Team-Fly®

Page 84

in class to hear the announcement. The student has an implied contract with the instructor to listen for any new
announcements. The actual announcement follows a pattern including a reference to the filename and link information
for retrieving the notes. The instructor notifies and passes along key information about the notes to the students. All
students must understand and follow this announcement pattern.

4. Response to the event is the responsibility of each student. Each may respond differently to the same event. A
student's response may be interpreted as the steps taken as a result of hearing the announcement. Specific steps may
include downloading, reading, printing, highlighting, marking, and discussing the notes. The student has access to the
details of the notes (created as part of the event) for use in his or her response. The student also knows the source (the
instructor) and may query the source for additional information.

5.2.1.2—
Terms for Describing Events and Event Handling

Based on the details of the simple example described above, we may extract some terminology for characterizing
various players and responsibilities in an event -driven application. The exact details for event handling vary significantly
for different programming languages; however, the same work must be done by all. Our terminology will be consistent
with object orientation and will (not by accident) map nicely into the event-handling model of Java.

1. Environment – The environment consists of all the external conditions and actions that may lead to the source firing
an event. Actions and conditions may be from other software components, a person interacting with the source, or
hardware devices. In many cases, actions may be the result of some other event. For example, a software ''button" fires
an event in response to a user-initiated mouse click (another kind of event) on the image of the button.

2. Source – A source fires a specific kind of event based on rules for its use. In firing an event, the source creates a new
EventObject and posts it to an EventQueue (a kind of waiting line that follows first-in, first-out logic). A source also
maintains an active list of interested listeners who want to be notified when an event occurs. Actual notification of the
listeners does not occur until another object, the EventHandler , says okay. This adds consistency to event handling. The
source must allow listeners to be added or removed from its active list.

3. EventObject – An event is an object. It knows its source as well as other information that may be useful to an
interested listener. There may be many different kinds of event objects. A hierarchy of subclasses under EventObject
may represent these kinds of events.

4. EventHandler – The event handler is a centralized software component whose only responsibility is to keep track of
generated events and dispatch (delegate responsibility for handling) them. The EventHandler usually runs in a
continuous loop to remove an event from an EventQueue and dispatch it (by telling the source to notify all its listeners).
This logic guarantees a first-in, first-out handling of events. A variation is made possible by using a priority queue, in
which

Page 85

higher priority events are handled first. The event handler assumes no responsibility for how any object responds. It
simply manages all events by dispatching them in an organized fashion. The listeners that are associated with each
source determine their own response to the event.

5. EventQueue – A normal queue or a priority queue may be used to store a set of EventObject instances. These
instances are typically inserted into the queue by event sources and then extracted and dispatched by the EventHandler .

6. EventListener Interface – This is a pattern for notification of event listeners by an event source. In object-oriented
terms, an EventListener interface defines the messages that may be sent by the source to interested listeners. Each kind
of event object has its own EventListener interface.

7. Event Listener – An event listener will be notified by an event source when a specific fired event is ready for
processing. It is the responsibility of the event listener to register with all event sources for which it wishes to receive
notification. An event listener must implement the messages defined in a particular EventListener interface,
corresponding to a specific kind of event. Notification is accomplished by the source, sending the appropriate message
to all registered listeners.

We now revisit the example presented earlier, showing how the above defined players and actions map into that
example.

Preparation for event handling consists of the following steps. The instructor provides details for notification about
significant events to the students. Specifically, the requirements are (1) registration as an interested listener consists of
attending class, and (2) notification consists of a class announcement providing details about the Web page and the file
that should be downloaded. Step 1 is equivalent to registration with the source (the instructor) by an object (the student)
as an interested listener for a specific event (posting of supplemental notes). Step 2 describes precisely how an interested
listener (the EventListener , the student) will be notified of a new event (posting of supplemental notes).

The following steps characterize the actual event generation, dispatching, notification, and handling.

1. Based on threshold conditions in the environment (described previously) the source (instructor) fires an event (creates
a set of supplemental notes).

2. The source posts that EventObject (the notes) with the EventHandler (his or her Web page).

3. The EventHandler (the Web page) dispatches the event (confirms the posting).

4. This is a signal to the source (the instructor) to notify all registered listeners of the event.

5. All properly registered EventListener objects (those students in class) are notified of the event, including details on
how to download.

6. Each EventListener object (each student in class) then responds to the event according to his or her own wishes.

Page 86

5.2.2—
The Java Delegation Event Model (for Advanced Readers)

The Java delegation event model, introduced with JDK 1.1 and continuing in JDK 1.2 (Platform 2), provides classes
representing the seven major players in event-driven applications as described in the previous section. In our discussion
we will focus on a simple environment where a person creates the conditions and actions that cause a source to fire an
event. This is typical of a user interacting with a graphical user interface. We present selected details of the classes in
JDK 1.2 that support the delegation event model and how they map into our seven players.

5.2.2.1—
Mapping the Event Players into Java Classes

We present classes in the JDK that correspond to the seven players described in the previous section. The programmer
may extend and add classes to those already provided in the JDK. We focus on classes that are part of the AWT (abstract
windowing toolkit). There are many other classes in the JFC (Java foundation classes) that also support event handling.

1. Environment – The user interacts with a GUI through the mouse and keyboard. Possible actions include movement,
clicking, double clicking, and dragging with the mouse plus typing from the keyboard. These hardware devices generate
events that are translated into appropriate responses by the software components in the GUI. For now we will skip the
details of the hardware -generated events and focus on the events generated by the software components (event
generation is part of the response by a software component to the hardware -generated event).

2. Source – Many sources in the JDK are subclasses of java.awt.Component . Typical sources include buttons, text
fields, lists, and other user interface (UI) components that respond to user interaction. Figure 5.6 shows how the
environment, event sources, and user interact in a typical GUI application.

Class MyGUI is the application. It is a subclass of java.awt.Frame, Window , and Container . As a container it contains
instances of Component . The user interacts with various components contained in MyGUI to generate events. These
components are the event sources. Other potential sources for events not shown in the figure include menu items and all
the JFC subclasses of JComponent (a subclass of Container).

Actual user interaction with these software components requires the use of some input device such as the mouse or
keyboard. In a very real sense, the mouse and the keyboard are the actual sources for most user-generated events.
However, semantically we say that clicking a mouse button with the cursor on a Button causes the Button to generate an
event. We call the Button the source of the event.

3. EventObject – Class EventObject in package java.util is the parent class of a hierarchy of subclasses representing
specific kinds of event objects. It has a field called source that represents the source that generated the event. Most
events are instances of AWTEvent or its subclasses. Figure 5.7 shows a hierarchy of

Page 87

Figure 5.6.
Environment and event sources.

the EventObject classes that are a part of JDK 1.1, including the AWTEvent hierarchy. In JDK 1.2 there are a large
number of other event classes (JFC event classes not shown in the figure) with common parent EventObject.

AWT events may be grouped into two categories: (1) low-level events and (2) semantic events. Low-level events are
those that are typically generated in response to direct interaction with the computer, such as clicking a mouse or
pressing a key on the keyboard. Semantic events are those typically generated by some user interface component such as
clicking a button. The low-level events make the semantic events possible.

In Figure 5.7, ComponentEvent and its subclasses define low-level events.

• ComponentEvent (component is resized, moved, shown or hidden)

• MouseEvent (mouse button is depressed, released, clicked, dragged, or moved)

• KeyEvent (key is pressed or released)

• ContainerEvent (a component is added or removed from a container)

• FocusEvent (a component gets or loses focus, usually by mouse click)

Page 88

Figure 5.7.
The EventObject hierarchy.

• WindowEvent (a window is iconified, deiconified, activated, deactivated, or closed)

• PaintEvent (a component is repainted – redisplayed on the screen)

Semantic events in Figure 5.7 include the
following.

• ActionEvent (clicking a button, selecting a menu item, double clicking an item in a list, typing Enter key in a text field)

• AdjustmentEvent (the user modifies a scroll bar)

• ItemEvent (the user selects an item from a checkbox, choice, or list)

• TextEvent (content of a text component – text field or text area – changes)

• PropertyChangeEvent – a property change event may be fired directly by methods in a class as a result of a command
to change a particular property (field). A delegate object (an instance of PropertyChangeSupport) assumes
responsibilities of the source for the property change event.

4. Event Handler – A package private class called EventDispatchThread in package java.awt is the event handler. It
runs in its own thread (Java supports

Page 89

multiple threads of execution) and is started whenever any Java program is executed. Its run() method is a loop that
performs the following steps unless interrupted.

AWTEvent event = theQueue.getNextEvent(); // get next event
theQueue.dispatchEvent(event); // dispatch the event

The event handler gets the next event from an event queue and then tells the event queue to dispatch the event. The
event queue sends an appropriate dispatch message to the source of the event. The source notifies all its listeners. Each
of the listeners takes action to respond to the event.

5. EventQueue – Class EventQueue in package java.awt contains instances of EventQueueItem (a package private
class). Event queue items are linkable nodes that contain event objects. Sources may post an event with EventQueue by
sending the message postEvent(AWTEvent event) to the system event queue. The following expression shows how to
post an action event generated by object aButton .

EventQueue theQueue = Toolkit.getEventQueue();
theQueue.postEvent(new ActionEvent(aButton));

6. EventListener Interface – An EventListener interface defines the messages that may be sent by the source to
interested listeners. Each kind of event object has its own EventListener interface. Figure 5.8 shows the event listener
interfaces that are part of the java.awt.event package and the java.beans package (JFC event listeners are not shown).
Notice that there is a listener interface for each kind of event object in the AWT (except for PaintEvent, which is not
designed for use with the event listener model3).

7. Event Listener – An event listener must register with all event sources for which it has an interest. Secondly, it must
implement the methods in the corresponding EventListener interface for all those events generated by the selected
sources. Having done this initialization properly, the event listener will be notified by the source when an event has
occurred; that is, it will be sent a message matching the template in the EventListener interface. There are options on
how an event listener may choose to meet its obligations. These options, as implemented in Java, are illustrated in
Chapter 6.

5.3—
The MVC Design Pattern

For many applications, especially those that provide a graphical user interface, the application may be described in terms
of three distinct concepts with separate responsibilities. These three concepts are model, view, and controller (MVC).

3 See the Java documentation.

Page 90

Figure 5.8.
AWT EventListener interface hierarchy.

The MVC concept, now recognized as a design pattern,4 was developed as part of the Smalltalk5 environment in the
1970s and 1980s. MVC assigns the following properties and responsibilities to model, view, and controller.

1. Model – Data and computations performed on data comprise the model of a software application. This model may be
as simple as an integer counter or as complex as a spreadsheet or database. The model is responsible for maintaining its
internal data and for providing commands and queries that allow external objects to access and/or modify its internal
data. The model is also responsible for broadcasting change notices to all interested views whenever its internal data
change. A helper object to provide consistency across all models often handles this last responsibility. The capabilities
of the helper object may be implemented through inheritance or delegation.

2. View – View objects are responsible for presenting a view of their associated model or models. Views may range
from simple textual display to complex tabular or graphical display. The view depends on queries provided by the model
to access

4 See Design Patterns: Elements of Reusable Object-Oriented Software , Gamma, et al., Addison-Wesley, 1994, for a
discussion of design patterns.

5 Smalltalk-80 was released as the first commercial product based on the Smalltalk language and was developed at Xerox Palo
Alto Research Center.

Page 91

the data it wishes to display. It is the responsibility of the view to register with its model(s) to be notified of changes.
Upon notification of a change in its model(s), the view must update its display. The view needs a reference to its model
(s).

3. Controller – A controller provides the interface between the model and an initiator (typically a user in a GUI
application) of changes in its model(s). It depends on commands provided by the model that allow the model's internal
data to be modified. The components (or widgets) along with their event handlers in a GUI application serve as
controllers. They present a graphical image for interaction with the user. Actions by the user cause the components to
fire events. These events are handled in a way to effect the intended change in the model(s). The event handling part of
the controller is typically consistent with a larger and more general concept for event handling. The controller needs a
reference to its model(s).

The separation of roles and responsibilities for model, view, and controller is a design pattern that enables the easy
addition of views or controllers without adversely affecting those already present. It provides a consistent approach to
the storage, modification, and display of data. With the evolution of GUI applications, the user interface has become the
software component with responsibility for both view and controller. We often speak of an M -VC design as opposed to
an MVC design. Clearly, the graphical components in a GUI represent the controls for modifying data in the model as
well as views for displaying the model. Figure 5.9 shows the key players in an M-VC design that uses a graphical user
interface.

The interactions in Figure 5.9 represent the M-VC concept. The user initiates an action by using the keyboard or mouse
to activate some visual control (component) in the GUI. The component (controller) responds by firing an event. The
eventHandler part of the controller is assumed to have registered as a listener for that kind of event and is notified of the
event firing. It responds by sending a command, setData(newValue), to the model. The model responds by changing its
data. It then invokes the helper object, changeMonitor, by sending it the message changed() . The helper object then
notifies all registered views of the change in the model by sending them the message update(model). Using the
knowledge of

Figure 5.9.
Key players in an M-VC design using a GUI.

Page 92

which model changed, each view then may query, for example, using getData(), the model for information required to
update itself.

5.3.1—
Inheritance Approach to M -VC

The inheritance approach to M-VC requires that all model classes extend a common parent class. The parent class
provides all fields and methods for maintaining a list of registered views and for notifying those views of changes in the
model. This approach is great from the standpoint of good object-oriented design and maximum reusability. In Java, the
common parent class for models is class java.util.Observable . Views must register as observers with the model and
implement the java.util.Observer interface, which defines only one command, update . See Figure 5.10. Observable uses
a Vector to store registered observers for the model.

5.3.2—
Delegation Approach to M-VC

Primary classes and their relationships are shown in Figure 5.11 for the delegation approach to M-VC in Java.

Figure 5.10.
Inheritance approach to M-VC in Java.

Page 93

Figure 5.11.
Delegation approach to M-VC in Java.

It is not always convenient or even possible for a model class to extend the parent class java.util.Observable ; then we
must use the delegation approach. The delegation approach to M-VC adds a new field to the model class. This field is
the delegate object responsible for registering views with the model and for notifying registered views when the model
has changed. This approach frees the model to extend any appropriate class (instead of Observable). The delegation
approach to M -VC in Java is an extension of the property change mechanism in Java beans (see example in Chapter 6).
Changing a property of a Java bean causes a PropertyChangeEvent to be fired. All objects that wish to be notified of the
property change must register (add themselves as listeners) with the bean and implement the PropertyChangeListener
interface.

TE
AM
FL
Y

Team-Fly®

Page 94

A model class may tap into this bean behavior by adding a delegate field that is an instance of class
java.beans.PropertyChangeSupport (see Figure 5.10). Class PropertyChangeSupport provides methods for maintaining
a list (using a Vector) of interested listeners to be notified of a PropertyChangeEvent. The implementations for adding
and removing property change listeners in the model simply pass responsibility along to the propertyChange field. In a
sense, our model is now behaving as a nonvisual Java bean. We present a simple example using this approach in Chapter
6.

The delegate also provides a command that fires the PropertyChangeEvent. At least one command in the model class
(e.g., setChangeableProperty in MyModel) must invoke the expression propertyChange.firePropertyChange() to fire the
event.

5.4—
Summary

Graphical user interfaces are event-driven applications. The Java platform provides a rich set of classes representing the
essential elements of an event-driven, GUI application. If an application interacts with data then the software developer
may take advantage of the MVC design pattern to provide a more object-oriented and elegant design for the application.
Java provides classes supporting two approaches to MVC: (1) the inheritance approach and (2) the delegation approach.

• Top-level windows (instances of Frame or JFrame) and other container classes organize and present graphical controls
to the user for interaction with a GUI application.

• Components or widgets are the graphical controls that allow a user to interact with a GUI application. Interaction with
a component causes an event to be fired. Event handling by the application causes desired changes to take effect.

• MVC is a design concept that separates responsibilities for (1) maintaining data used by an application (model), (2)
allowing the user to modify data (controller), and (3) presenting data to the user (view).

Page 95

6—
Implementing Simple GUIs in Java

In this chapter we extend our discussion of GUI applications, event handling, and MVC to show simple implementation
details in Java of the concepts presented in Chapter 5. We limit our implementations to a select few of the available
components that are part of the AWT (abstract windowing toolkit) and JFC (Java foundation classes).

6.1—
Containers and Essential Components – Building a GUI

6.1.1—
The Top-Level Window – Essentials

The top-level window is typically an instance of Frame or JFrame . Essential and desirable steps in creating a top-level
window include the ability to (1) set its size, (2) give it a title, (3) position it on the screen, (4) display it, and (5) close it.
These steps are easily accomplished by the source code shown in Listing 6.1. Details for centering the frame on the
screen and closing it are a little messy and are done automatically by many development environments. We encounter
our first event handler in choosing to enable window closing. For now we present the event-handling code without
explanation. It is covered in more detail in Section 6.2. The operations for Frame in Listing 6.1 also work correctly for
JFrame.

Listing 6.1 Essential/Desired Operations for a Top-Level Window

/** A simple frame, centered and closeable
*/

import java.awt.*;
import java.awt.event.*;

public class EssentialFrame extends Frame {

 public EssentialFrame () {
 super(''A Simple Frame"); // create with title
 setSize(300, 200);
 // enable the window to be closed - event handler
 addWindowListener(new WindowAdapter() {

Page 96

 public void windowClosing (WindowEvent evt) {
 System.exit(0);
 }
 });
 center();
 setVisible(true);
 }

 //Center the window
 public void center () {
 Dimension screenSize =
 Toolkit.getDefaultToolkit().getScreenSize();
 Dimension frameSize = this.getSize();
 // set frameSize to smaller of frameSize or screenSize
 if (frameSize.height > screenSize.height)
 frameSize.height = screenSize.height;
 if (frameSize.width > screenSize.width)
 frameSize.width = screenSize.width;
 // center the frame by setting upper left corner location
 this.setLocation((screenSize.width -
 framesize.width) / 2,
 (screenSize.height - frameSize.height) / 2);
 }

 public static void main (String[] args) {
 new EssentialFrame();
 }
}

The example in Listing 6.1 displays a 300 × 200 pixel, centered, closeable window that has a specified title and is
empty. It is pretty boring and useless. The next step in building a useful GUI application is to add components. There are
a large number of predefined components in the AWT and JFC. We choose to add only a few selected components that
are simple and useful for common user interaction. More specifically, we focus on the following components to
illustrate steps in creation, sizing, and positioning of those components supporting text input, text display, and simple
controls.

6.1.2—
Simple Components

1. java.awt.Label – contains a field called text of type String . The value of text may be accessed by query getText() and
changed by command setText(aString) by the program but not the user. There are options for setting the alignment of the
text string and for changing font properties. This component is useful for static labeling and for dynamic display of
simple textual output that is under program control. The JFC component javax.swing.JLabel may be used in the same
way.

2. java.awt.TextField – contains a single line of text, represented by field text of type String, that may be editable by the
user. The value of text may be accessed

Page 97

by query getText() and changed by command setText(aString) by the program. The value of text may also be changed
directly by the user. This component is useful for user input of simple textual information as well as output display. The
JFC component javax.swing.JTextField may be used in the same way. The text field components generate a KeyEvent
while being edited and an ActionEvent on pressing the Enter key.

3. java.awt.Button – a simple control that translates a mouse click over its image into an ActionEvent. This provides the
user with a simple activating input. The JFC component javax.swing.JButton may be used in the same way. Other useful
components include the AWT components List, TextArea, Choice, Checkbox, CheckboxGroup (a group of Checkbox
objects behaving as a group of radio buttons), Dialog, and Menu . The JFC adds many more useful components. Some of
these components are used in the GUI laboratories in Part Two of the book.

6.1.3—
Organizing and Laying out Components in a Window

The Java 2 Platform comes with several predefined layout managers that automatically size and position components
within a container. Each container has a default layout manager; the default for Frame is BorderLayout (see Java
documentation). For simple applications the predefined layout managers may be suitable; however, for applications with
a large number of precisely arranged components a different approach is needed.

The process of sizing and positioning components in a container is one of the most labor-intensive parts of building a
GUI application. Fortunately, we have a variety of development environments that allow this to be done graphically. The
development environment generates the Java code from the graphical design. Each development environment has its
own style for layout coding. A simple, non -cluttering, and understandable style that works well for most GUI
applications is to set the layout manager to null and use the Component method setBounds to set the size and position of
all components. JBuilder1 uses this approach. Listing 6.2 shows a simple class, LayoutExample , for adding two buttons
and a label to a Frame . Command initialize() sets the layout to null, creates the components, determines their size and
position using setBounds(), and then adds them to the frame.

Listing 6.2 Simple Layout Example

/** Positioning components in a container
*/

import java.awt.*;
import java.awt.event.*;

1 JBuilder is a product of Borland, http://www.borland.com/jbuilder/.

Page 98

public class LayoutExample extends Frame {

 Label valueLabel;
 Button incrementButton;
 Button resetButton;

 public LayoutExample () {
 super(''An Incrementer");
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 System.exit(0)
 }
 });
 initialize();
 }

 private void initialize () {
 setSize(200, 100);
 this.setLayout(null);
 incrementButton = new Button("Increment");
 incrementButton.setBounds(20, 40, 75, 25);
 add(incrementButton);
 resetButton = new Button("Reset");
 resetButton.setBounds(105, 40, 75, 25);
 add(resetButton);
 valueLabel = new Label("0" , Label.CENTER);
 valueLabel.setBounds(75, 70, 50, 25);
 add(valueLabel);
 setVisible(true);
 }

 public static void main (String[] args) {
 new LayoutExample();
 }
}

If we use a JFrame instead of Frame, the components must be added to the content pane of the JFrame . Listing 6.3
shows the details for command initialize() if we are using a JFrame. Components are contained in the JFrame's content
pane. The second parameter of each setBounds() message is reduced by 20 because the y-distance is measured from the
bottom of the title bar in a JFrame. Key changes are shown in boldface.

 Listing 6.3 Adding Components to a JFrame

. . .
 private void initialize () {
 setSize(200, 100);

Page 99

 this.getContentPane().setLayout(null);
 incrementButton = new Button(''Increment");
 incrementButton.setBounds(20, 20, 75, 25);
 getContentPane().add(incrementButton);
 resetButton = new Button("Reset");
 resetButton.setBounds(105, 20, 75, 25);
 getContentPane().add(resetButton);
 valueLabel = new Label("0" , Label.CENTER);
 valueLabel.setBounds(75, 50, 50, 25);
 getContentPane().add(valueLabel);
 setVisible(true);
 }
 . . .

We have now built a simple GUI with some components (two buttons and a label; other components are used in
examples in later chapters) that still does nothing. The next step is to understand and enable event handling, to make the
application do some work.

6.2—
Implementation of Event Handling in Java

The delegation event model in Java allows any object to register as an event handler by (1) adding itself as a listener to
the event source and (2) implementing the appropriate EventListener interface for that source.

6.2.1—
Options for Implementing an EventListener Interface

In a GUI application there are many options for implementing listener interfaces for the variety of events that may be
generated by components in the GUI. These options are illustrated in Figure 6.1.

Specific EventListener interfaces may be implemented:

• Directly by:

• MyGUI
• NamedInnerClass
• AnonymousInnerClass
• ExternalHelper

• Subclassed under predefined adapter:

• Difficult for MyGUI (usually a subclass of Frame or JFrame)
• Possible for NamedInnerClass
• Possible for AnonymousInnerClass
• Possible for ExternalHelper

The first option available to an event listener is to decide who implements the EventListener interface methods. The
event listener may choose to implement

Page 100

Figure 6.1.
Options for implementing EventListener interfaces.

these methods itself or to use a helper class. The helper class may be (1) a named inner class, (2) an anonymous inner
class, or (3) an external class.

An advantage of using a helper class is that the helper class usually has no constraints on its parent class and may extend
one of the predefined adapter classes. A GUI application class is typically a subclass of Frame . Adapter classes provide
''do nothing" implementations of EventListener subinterfaces that have more than one method. They satisfy the contract
that all methods in the interface must be implemented. In many applications, not all the methods in an EventListener are
used; the helper class then extends the adapter class and redefines the method or methods that are used. In a roundabout
way, adapters save a little effort by providing empty implementations for the methods that are not used. Figure 6.2
shows the predefined adapter classes that are part of the AWT. Each adapter class implements its corresponding event
listener interface; for example, class ComponentAdapter implements interface ComponentListener.

6.2.2—
Steps in Processing a Simple Button Click Event

In the AWT, components have peer classes that interface directly with the operating system. Implementations for these
peer classes handle details of capturing low-level events and posting semantic (see Chapter 5) events to the EventQueue.
Figure 6.3 presents a collaboration diagram showing the sequence of steps following the clicking of a Button component
in a user interface. The AWT Runtime is not really an object. It is more precisely a collection of objects and instructions
that comprise the Java runtime environment (JRE). Its first role in our example is to recognize that the mouse pointer is
over the button and that the mouse button has been clicked, that is, responds to an imagined message, buttonClicked().

Page 101

Figure 6.2.
Predefined adapter classes in the AWT.

Discussion of the Collaboration Diagram in Figure 6.3

The rectangular boxes are objects with labels identifying their class and optionally the object name; for example, button
is an instance of Button and is the source for the ActionEvent. Object AWT Runtime represents the peer class object for
Button plus other supporting communication with the operating system; most of its details are hidden.

The steps are numbered in their sequence of occurrence. Thus step 1 occurs when the user clicks the mouse with its
cursor positioned on the button object's image in a user interface. The steps show messages sent to an object by another
object. The arrows show the direction of communication. A description of the steps in Figure 6.3 is given as:

1. Based on actions by the user, the AWT Runtime detects that button has been clicked.

2. The peer object (part of the AWT Runtime) updates the button by making it look as if it has been clicked. It cycles
from normal to depressed to normal view. Since this is part of the hidden details of the peer class, the exact sequence
and messages of this step are unknown.

3. The peer object for Button fires an ActionEvent; that is, it creates a new instance, evt, of class ActionEvent with button
as the source.

4. The peer object posts the event with the EventQueue.

5. The EventDispatchThread gets the ActionEvent, evt , from the EventQueue.

Page 102

Figure 6.3.
Collaboration diagram – generation and handling of an ActionEvent .

6. The EventDispatchThread sends the message dispatchEvent(evt) to the EventQueue.

7. The EventQueue sends the message dispatchEvent(evt) to the button.

8. The first response of button is to send itself the message processEvent(evt).

9. The processEvent method sends the message processActionEvent(evt) to button.

10. The processActionEvent method sends message actionPerformed(evt) to all registered
listeners.

11. Each registered listener performs the steps in its implementation of actionPerformed.

6.2.3—
Examples of Events -Handling Options in the Java 2 Platform

A number of options were described in Section 6.2.1 for implementation of the details for event handling. In this section
we define a simple GUI application consisting of a frame with two buttons and a label in it. Then we present details for
all the available options for handling events generated by this simple application. A screen shot is shown in Figure 6.4 of
the application after it is first launched and after a number of button clicks. The name of our application class is
EventExampleUI .

We need to handle two kinds of events. The first is an ActionEvent generated by one of the buttons. The second is a
WindowEvent generated by clicking the

Page 103

Figure 6.4.
Simple event example in Java.

''close" icon (with an × on it) in the upper right corner of the frame. This allows us to close the frame and application.
We begin by letting the UI class handle the action event and delegating the window-closing event to an anonymous
adapter class. We will then look at other options for handling the action events.

6.2.3.1—
Handling the WindowEvent with an Anonymous Adapter Class

Anonymous classes are classes with no specific name that implement an interface or extend an existing class.
Anonymous classes can only be inner classes. Therefore, we extend and redefine part of the WindowAdapter class (the
method for window closing) as an inner class within our application class, EventExampleUI . Listing 6.4 shows the
details for this part of EventExampleUI.java . It is contained in the implementation details for the constructor and shown
in boldface in Listing 6.4. Class EventExampleUI extends class java.awt.Frame .

Listing 6.4 Details for an Anonymous Window Adapter Inner Class

// constructor
public EventExampleUI() {
 super("An Incrementer");
 addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent evt) {
 System.exit(0);}});
 initialize();
}

We are adding a WindowListener to the current object (an instance of EventExampleUI) that is created as a new
WindowAdapter subclass that redefines the windowClosing command to exit (close the application).

When we compile EventExampleUI we get two .class files. The first is EventExampleUI.class as expected; the second is
the compiled version of the anonymous inner class. By default, the Java compiler assigns unique labels to all anonymous
classes. In this example, we will observe a class file EventExampleUI$1.class. The $ sign attaches the anonymous class
designation (1 in this case) to its containing class (EventExampleUI). In this way Java maintains unique names for all
classes including named or anonymous inner classes.

TE
AM
FL
Y

Team-Fly®

Page 104

Since only method windowClosing is redefined in our anonymous inner class, we accept the default (null)
implementations in WindowAdapter for the remaining six methods of interface WindowListener. Without the short code
segment just described, our application cannot be closed gracefully. The only options would be to use a system interrupt
such as the task manager or a control key from within a command window (or of course the time-tested method of
pulling the plug out of the wall!).

6.2.3.2—
Handling an Action Event – Letting the Application Implement ActionListener

As a first option for handling action events we let the application class implement the ActionListener interface. This is a
promise to implement the method defined in ActionListener , which is actionPerformed(ActionEvent evt) . Complete
details for class EventExampleUI are given in Listing 6.5. We see the details of the event-handling code as well as
details for building the user interface. Statements necessary for handling action events are shown in boldface in the
listing.

Listing 6.5 Complete Details for EventExampleUI.java

import java.awt.*;
import java.awt.event.*;

public class EventExampleUI extends Frame implements ActionListener {

 Label valueLabel;
 Button incrementButton;
 Button resetButton;

 public EventExampleUI () {
 super (''An Incrementer");
 addWindowListener(new WindowAdapter () {
 public void windowClosing(WindowEvent evt)
 System.exit(0);}});
 initialize();
 }

 private void initialize () {
 setSize(200, 100);
 this.setLayout(null);
 incrementButton = new Button("Increment");
 incrementButton.setBounds(20, 40, 75, 25);
 // register instance of this class as a listener
 incrementButton.addActionListener(this);
 add(incrementButton);
 resetButton = new Button("Reset");
 resetButton.setBounds(105, 40, 75, 25);

Page 105

 resetButton.addActionListener(this);
 add(resetButton);
 valueLabel = new Label(''0" , Label.CENTER);
 valueLabel.setBounds(75, 70, 50, 25);
 add(valueLabel);
 setVisible(true);
 }

 public void actionPerformed (ActionEvent evt) {
 if (evt.getSource() == incrementButton) {
 int value = (new Integer(valueLabel.getText())).intValue();
 valueLabel.setText(String.valueOf(value + 1));
 } else if (evt.getSource() == resetButton)
 valueLabel.setText("0");
 }

 public static void main (String[] args) {
 new EventExampleUI();
 }
}

Three significant things must happen for EventExampleUI to handle the events generated by the two buttons.

1. Class EventExampleUI must promise that it implements ActionListener.

2. Class EventExampleUI must register itself (this) with both buttons to receive notification of the action events they
generate. This is achieved by sending the message addActionListener(this) to each button.

3. Class EventExampleUI must implement method actionPerformed from interface ActionListener to provide its
intended response. Details of the response are shown in the listing, either incrementing the valueLabel by one or
resetting it to zero.

6.2.3.3—
Handling an Action Event – Using an Anonymous Inner Class

Listing 6.6 shows significant parts of a revised version of EventExampleUI2.java that uses anonymous inner classes to
handle action events from the two buttons.

Listing 6.6 Using an Anonymous Inner Class to Handle Action Events

import java.awt.*;
import java.awt.event.*;

public class EventExampleUI2 extends Frame {
 . . .
 private void initialize () {
 setSize(200, 100);

Page 106

 this.setLayout(null);
 incrementButton = new Button(''Increment");
 incrementButton.setBounds(20, 40, 75, 25);
 incrementButton.addActionListener(new ActionListener() {
 public void actionPerformed (ActionEvent evt) {
 int value = (new
 Integer(valueLabel.getText())).intValue();
 valueLabel.setText(String.valueOf(value + 1));

 }});
 add(incrementButton);
 resetButton = new Button("Reset");
 resetButton.setBounds(105, 40, 75, 25);
 resetButton.addActionListener(new ActionListener() {
 public void actionPerformed (ActionEvent evt) {
 valueLabel.setText("0");
 }});
 . . .
 }
 . . .
}

First, notice that class EventExampleUI2 does not say it implements ActionListener and that method actionPerformed is
removed as a separate method. The code shown in boldface creates and implements two anonymous inner classes to
handle action events from each of the buttons.

When file EventExampleUI2.java is compiled it produces four .class files: EventexampleUI2.class, EventExampleUI2
$1.class, EventExampleUI2$2.class , and EventExampleUI2$3.class .

6.2.3.4—
Handling an Action Event – Using a Named Inner Class

This option is similar to the anonymous inner class except it looks more like our "normal" definition of classes, creation
of objects and message sending. Class EventExampleUI3 adds an action listener to incrementButton that is a new
instance of the named inner class IncrementButtonEventHandler. The named inner class has one responsibility – to
implement actionPerformed for the incrementButton action event. Selected details are shown in Listing 6.7 for this
option.

Listing 6.7 Using a Named Inner Class to Handle incrementButton Events

import java.awt.*;
import java.awt.event.*;

public class EventExampleUI3 extends Frame {

 . . .

Page 107

 private void initialize () {
 setSize(200, 100);
 this.setLayout(null);
 incrementButton = new Button(''Increment");
 incrementButton.setBounds(20, 40, 75, 25);
 incrementButton.addActionListener(
 new IncrementButtonEventHandler());
 add(incrementButton);
 . . .
 }

 class IncrementButtonEventHandler implements ActionListener {
 public void actionPerformed (ActionEvent evt) {
 int value = (new
 Integer(valueLabel.getText())).intValue();
 valueLabel.setText(String.valueOf(value + 1));
 }
 }

 . . .
}

When file EventExampleUI3.java is compiled it produces for the named inner class a file named EventExampleUI3
$IncrementButtonEventHandler.class . In other words, it is consistent with the naming convention for all inner classes. It
just happens to have a specific name instead of a number.

6.2.3.5—
Handling an Action Event – Using an External Helper Class

The major disadvantage of an external helper class when compared to the inner classes is that it does not have direct
access to the fields of the UI class. Since the event handler method typically needs to interact with those fields, this is a
distinct disadvantage. There are several ways to handle this problem. One approach is to let the helper class have a field
that is a reference to the UI class. Being in the same package makes direct access to all but private fields of the UI class
possible through this contained field. This approach is illustrated in Listing 6.8 for EventExampleUI4 with external
helper class IncrementButtonEventHandler.

Listing 6.8 Using an External Helper Class for Handling incrementButton Events

import java.awt.*;
import java.awt.event.*;

public class EventExampleUI4 extends Frame {

 . . .

Page 108

 private void initialize () {
 setSize(200, 100);
 this.setLayout(null);
 incrementButton = new Button(''Increment");
 incrementButton.setBounds(20, 40, 75, 25);
 incrementButton.addActionListener(
 new IncrementButtonEventHandler(this));
 add(incrementButton);
 . . .
 }

 . . .
}

class IncrementButtonEventHandler implements ActionListener {

 EventExampleUI4 frame;

 public IncrementButtonEventHandler(EventExampleUI4 f) {
 frame = f;
 }

 public void actionPerformed (ActionEvent evt) {
 int value = (new
 Integer(frame.valueLabel.getText())).intValue();
 frame.valueLabel.setText(String.valueOf(value + 1));
 }
}

As a separate class, IncrementButtonEventHandler.java compiles to IncrementButtonEventHandler.class .

We have presented a number of options for implementing the event handling part of a GUI application. All are correct
and work as expected. The choice of one option over another is often dependent on the attitudes of the implementer. A
number of popular Java development environments all make different choices. We prefer the anonymous inner class that
either implements the listener interface or extends the appropriate adapter class (JBuilder also makes this choice). This
approach offers the advantage that the response to an event is easily located with the other code that initializes the event
source. In other words, we can see the intended response to a button click in the same group of code that sets its size and
other properties.

6.3—
Implementing MVC in Java

In this section we develop a simple MVC example where the model is a simple counter. The controller includes two
buttons to allow the user to increment or reset the counter. The view is a simple text label showing the current value of
the

Page 109

Figure 6.5.
A simple MVC GUI application.

counter. This example is implemented using both the inheritance approach and the delegation (beans) approach. Figure
6.5 shows the GUI (bean version) for this application. The inheritance version is identical (in both look and feel) except
for its title.

6.3.1—
MVC Counter Example Using the Inheritance Approach

The design for this simple example is shown in Figure 6.6. The model class, CounterModel, extends Observable and the
view-controller class, CounterUI, implements interfaces Observer and ActionListener. Recall from Chapter 5 that class
Observable represents models and interface Observer represents view controllers in the inheritance approach to MVC.

Listing 6.9 shows all details of the CounterModel class. Key method setCount(anInt) changes the internal state and has
responsibility for broadcasting any change notifications using inherited methods, setChanged() and notifyObservers() ,
from parent class Observable .

Figure 6.6.
Design for MVC implementation using inheritance approach.

Page 110

Listing 6.9 Details of Class CounterModel

/* class CounterModel - MVC Inheritance Example
*/
import java.util.*;

public class CounterModel extends Observable {
 protected int count = 0;

 // commands
 public void setCount (int anInt) {
 count = anInt;
 setChanged();
 notifyObservers();
 }

 public void increment () {
 setCount(count + 1);
 }

 public void reset () {
 setCount(0);
 }

 // queries
 public int getCount () {
 return count;
 }
}

Listing 6.10 shows selected details of class CounterUI. The implementation for method actionPerformed shows how the
controller function interacts with the model. Method update (from interface Observer) shows how the view responds to
an update message from the model; it queries the model for its count and updates the labelCount widget in the GUI. The
GUI class must register as an observer of the model and a listener for the button events.

Listing 6.10 Selected Details of Class CounterUI Showing View-Controller Methods

import java.awt.event.*;
import java.awt.*;
import java.util.*;
import javax.swing.*;

Page 111

public class CounterUI extends JFrame
 implements Observer, ActionListener {

 . . .
 // set a reference to the model
 protected CounterModel counter = new CounterModel();
 . . .

 public void init () {
 . . .
 // register with model and controls
 counter.addObserver(this);
 incrementButton.addActionListener(this);
 resetButton.addActionListener(this);
 . . .
 }

 . . .

 // View update method
 public void update (Observable o, Object arg) {
 if (o instanceof CounterModel)
 labelCount.setText(''Current value of count: "
 + String.valueOf(counter.getCount()));
 }

 // Controller event handlers
 public void actionPerformed (ActionEvent evt) {
 if (evt.getSource() == resetButton)
 counter.reset();
 else if (evt.getSource() == incrementButton)
 counter.increment();
 }

 /** Invoke this as a stand alone application.
 */
 public static void main (String args[]) {
 new CounterUI("MVC-Counter");
 }
}

6.3.2—
MVC Counter Example Using the Delegation (Beans) Approach

The design for this simple example is shown in Figure 6.7. The model class, CounterBean, extends Object and uses a
delegate instance of PropertyChangeSupport to notify any views of changes in the state of the model. This is
accomplished by

Page 112

Figure 6.7.
Design for MVC implementation using delegation (beans) approach.

directing the delegate to fire a PropertyChangeEvent. The view-controller class, CounterBeanUI , implements interfaces
PropertyChangeListener for notification of changes in the model and ActionListener for handling controller events.

Since the model is using a delegate for its MVC duties, it may extend any class. In this case, it extends Object . The only
change in the view-controller class is implementation of a different interface (PropertyChangeListener instead of
Observer) for notification by the model's change monitor.

Listing 6.11 shows details for class CounterBean. The key method setCount must modify the internal state and then fire
a PropertyChangeEvent via the delegate object propertyChange. Since the view-controller only has a reference to its
model, the model must also include methods allowing a view to register as a listener for the property change event. The
model implements two registration methods, for adding and removing property change listeners, by invoking the
appropriate similar methods on the delegate.

Page 113

Listing 6.11 Details of Class CounterBean

/** class CounterBean - MVC Delegation Example
*/
import java.beans.*;

public class CounterBean extends Object {

 protected PropertyChangeSupport propertyChange
 = new PropertyChangeSupport(this);
 protected int count = 0;

 // supporting commands for registration of listeners
 public synchronized void addPropertyChangeListener
 (PropertyChangeListener listener) {
 propertyChange.addPropertyChangeListener(listener);
 }

 public synchronized void removePropertyChangeListener
 (PropertyChangeListener listener) {
 propertyChange.removePropertyChangeListener(listener);
 }

 // model commands
 public void setCount (int anInt) {
 count = anInt;
 propertyChange.firePropertyChange(''count" , null, null);
 }

 public void increment () {
 setCount(count + 1);
 }

 public void reset () {
 setCount(0);
 }

 // queries
 public int getCount () {
 return count;
 }
}

Listing 6.12 shows selected details of class CounterBeanUI that are important to the beans approach to MVC.

TE
AM
FL
Y

Team-Fly®

Page 114

Listing 6.12 Selected Details of Class CounterBeanUI

import java.awt.event.*;
import java.awt.*;
import java.beans.*;
import javax.swing.*;

public class CounterBeanUI extends JFrame
 implements PropertyChangeListener, ActionListener {

 protected CounterBean counter = new CounterBean();

 . . .
 public void init () {
 . . .
 // register with model and controller event sources
 counter.addPropertyChangeListener(this);
 incrementButton.addActionListener(this);
 resetButton.addActionListener(this);
 . . .
 }
 . . .

 // event handling – for model invoked event
 public void propertyChange(PropertyChangeEvent evt) {
 if ((evt.getSource() == counter)
 && (evt.getPropertyName().equals(''count"))) {
 labelCount.setText("Current value of count: "
 + String.valueOf(counter.getCount()));
 }
 }

 // event handling - controller generated events
 public void actionPerformed (ActionEvent evt) {
 if (evt.getSource() == resetButton)
 counter.reset();
 else if (evt.getSource() == incrementButton)
 counter.increment();
 }

 public static void main (String args[]) {
 new CounterBeanUI("MVC-Bean Counter");
 }
}

A simple walk through is helpful in understanding this example. When the application is launched the constructor in
class CounterBeanUI (not shown in the

Page 115

listing) invokes the init method, which registers the instance of CounterBeanUI as a listener with the model, counter ,
and with the two event sources used by the controller, incrementButton and resetButton . Suppose the user clicks the
increment button (with label ''Increment"). This causes an ActionEvent to be fired. Having registered as a listener for
action events, our application is sent the message actionPerformed. Based on the details of actionPerformed in Listing
6.12, the increment message is sent to model counter . From Listing 6.11 the increment method in class CounterBean
invokes setCount. Method setCount updates the value of count to be one larger than before and tells its propertyChange
delegate to fire a PropertyChangeEvent. From this point we must look at the source code for PropertyChangeSupport to
see what happens next. In essence, the propertyChange delegate posts the event and then handles it by sending the
message propertyChange to all registered listeners (including our application object – an instance of CounterBeanUI).
The steps in method propertyChange in Listing 6.12 are then executed to update the value of the labelCount widget in
our application GUI.

There are many options for either approach to MVC in Java. For example, a model may have multiple views and
controllers. These views and controllers may reside in one or more GUIs. A given view controller (GUI) may also have
multiple models.

6.4—
Summary

Implementation of a graphical user interface (GUI) in Java may be done by using appropriate classes in the abstract
windowing toolkit (AWT) and Java foundation classes (JFC) directly or by using one of many available interface
development environments (IDEs).

The major requirements for a GUI include:

1. a top-level container (instance of Frame or

2. components for user interaction (instances of subclasses of Component)

3. layout of the components in their containers (using default or custom layout options)

4. enabling of components by implementation of event handling (using inner classes or external helper classes).

Java uses a delegation event-handling model. Any object that registers with an event source and implements the required
listener interface may be an event handler.

Model, view, and controller (MVC) is a design pattern that organizes and separates responsibilities for storing, viewing,
and modifying data that is part of an application.

6.5—
Exercises

1 Build a simple GUI application that has two text fields for entering numbers. Place labels above the text fields to
indicate Fahrenheit and Celsius.

Page 116

The behavior of the application should be implemented so that each text field can be edited to change its temperature.
The text fields are to be synchronized to show the same equivalent temperature. On each keystroke modifying the value
of one temperature, the other temperature should be updated immediately to reflect the change. Hint: Use one of the key
events. See class java.awt.TextField in the Java documentation.

2 You are to build a simple calculator that performs the basic arithmetic operations (+, -, ∗, /). A typical layout is shown
below. The application is to be built without the use of an interface development environment (IDE) such as JBuilder.
You will find it helpful to use panels and a grid layout for the buttons. See classes java.awt.Panel and
java.awt.GridLayout in the Java documentation for details and hints on using these classes.

3 You are to build a GUI application that explores the use of several key AWT components including event handling.
The project will require the use of AWT components Frame, Button, TextField, Panel, Label, Choice, CheckboxGroup,
and List as well as supporting classes Color, Font, and layouts (BorderLayout, FlowLayout, GridLayout, null layout).
This project requires that the reader be familiar with many of the AWT classes or to gain that familiarity through
independent study.

The project is to be done without the use of any Java IDE. This is to be a Java application (use a centered frame as main
window). The frame will contain the following components with the indicated functionality:

• Three buttons labeled ''Red," "Green," and "Blue" that set the background color for the frame. Clicking on any one
button must disable that button, set the background color, and ensure that the other two buttons are enabled.

• A Choice object that also allows the user to set frame background color to red, green, or blue. The three buttons
and Choice must be synchronized. Selected choice must agree with the current background color.

• Two TextField objects with Labels . One text field will display a number (labeled "Root") and the other will
display the square of that number (labeled "Square"). Both text fields are to be editable. Changing the number in
either text field will update the other with each keystroke.

• A CheckboxGroup object with options Normal and Reverse. The Normal option (default) is to set the relationship
between the two text fields as

Page 117

''Root"–"Square" corresponding to left–right. The Reverse options sets the relationship between the two text fields
as "Square"–"Root" corresponding to right–left. On clicking one of the checkboxes, the labels for "Root" and
"Square" will change to be consistent with this logic and the roles of the two text fields will also change.

• A List object that will display an event message for each user-initiated event. It must also handle List events for
selection, deselection, and double clicking.

User Action Event Message

Click background color button "Background color set by Red Button"

Set background color with Choice "Background color set by Choice – Red"

Edit text in "Root" text field "Edited value of root"

Edit text in "Square" text field "Edited value of square"

Select Reverse checkbox "Role of numbers reversed"

Select Normal checkbox "Role of numbers normal"

List item double clicked "List item at index 3 double clicked"

List item selected "List selected at index 2"

List item deselected "List deselected at index 2"

Page 118

A typical layout is shown above for this application. The background is the area consisting of two thin stripes – one
below the buttons and one below the Square and Root text fields. This example was built using only combinations of
panels and predefined layout managers.

4 Using the inheritance approach to MVC build an application that displays two views of a two-dimensional point. The
actual point may be selected by clicking the mouse within a region of the GUI window. A typical view of this
application is shown below. It has the following features.

• Model – contains a single field, which is an instance of java.awt.Point.

• View – two views are provided: (1) a text label (instance of java.awt.Label) indicating the currently selected point
and (2) a line drawn from the upper left corner of the selectable area to the point at which the mouse was clicked. A
coordinate label generated using Graphics method drawString is added to the end of the line as shown in the figure.

• Controller – the controller intercepts mouse-click events in the white area of the GUI shown, capturing the
coordinates of the mouse position. The model is updated to have this new value.

5 Repeat Exercise 4 using the Java beans (delegation) approach to MVC.

Page 119

7—
Errors and Exceptions

In a world with perfect users, perfect programs, and perfect hardware we would not have to concern ourselves with
exceptions. Users would never enter incorrect data (e.g., enter an alphabetic character when a number is required).
Hardware would never fail. Printers would always be on when our software attempts to access them. A hard drive would
never be full when a program attempts to write to it. Such a world does not exist.

Brittle programs do indeed crash because of some failure in the input, the program logic, or the physical system
supporting the application. Some crashes occur because of hardware interrupts (failures in a hardware component) or
synchronization conflict (two or more segments of code attempting to modify the same data simultaneously). Program
crashes may be catastrophic. If the rudder computer control system on an aircraft were to go down or the computer
guidance system on a rocket were to fail, a catastrophe of major proportions might occur. Often a program crash results
in a loss of input data – not a catastrophe but a profound annoyance to the user. One's confidence in using a program
often disappears if such loss of data occurs frequently.

Exception handling involves defensive programming tactics that ensure a more benign outcome if your programming
application should fail. Exception handling can ensure that input data are saved before a program is terminated, can
notify the user that an input or hardware error has occurred and allow program execution to continue, or can bring the
system to a stable and safe state before exiting the application. The context of the application and the nature of the
exception determine the appropriate course of action.

In older languages only primitive mechanisms exist for indicating and responding to errors. One technique that has been
used is to have a function return an error value (usually an int). This enables the caller (the segment of code that invokes
the function) to detect that an error has occurred and to take corrective action. This technique is limited by the fact that
often the error that occurs within a function disables the software application before being able to return an error value
and notify the caller that corrective action must be taken. Examples of such errors include an index -range error in an
array (attempting to modify an index location beyond the range in the array), sending a command to an object whose
value is null (object not constructed), or assigning a string value to a numeric type. Many other types of errors also
disable the software application before the function can return an error value.

Page 120

Figure 7.1.
Throwable – errors and exceptions.

Java provides a powerful mechanism for exception handling that avoids the problems mentioned above. We explore
Java's exception and error handling mechanism in this chapter and illustrate its use. Some languages speak of ''raising"
an exception or error. Consistent with Java terminology, we speak of "throwing" an exception or error.

7.1—
Classification of Errors and Exceptions

Errors or exceptions in Java are always an instance of a class derived from Throwable. Generally speaking, errors are
more serious than exceptions. A program cannot recover from an error (the program terminates); however, it may be
able to recover from an exception and continue running. Many exceptions may be avoided through correct
programming. There are a large number of predefined exception and error classes in the Java platform. We may also
construct our own exception classes for use in an application.

The Java hierarchy of Throwable classes that support errors and exceptions is shown in Figure 7.1.

For brevity, additional subclass hierarchies are indicated in the figure with a generic name and an ellipsis (. . .). There
are two major categories of

Page 121

errors: VirtualMachineError (an abstract class) and LinkageError. A VirtualMachineError is thrown whenever the Java
virtual machine is broken or has run out of necessary resources (e.g., out of memory or stack overflow). A LinkageError
indicates that an incompatible change has occurred between two linked classes. An AWTError is thrown whenever a
serious AWT error occurs. An instance of ThreadDeath is thrown whenever an active thread is sent the zero-argument
message, stop(). Method stop() is deprecated (its use is no longer advisable) in JDK 1.2; the reader is referred to the Java
documentation for additional information.

There are two major categories of exceptions: IOException and RuntimeException. A RuntimeException1 is thrown
during normal operation of the Java virtual machine indicating an exceptional condition. A runtime exception generally
occurs because of a programming error (index range error or sending a command or query to a null object). These
programming errors are usually fixed by better programming. There are many kinds of runtime exceptions (more than
twenty subclasses in JDK 1.2). An IOException is thrown as the result of failed or interrupted I/O operations. An
IOException may occur because of trying to read past the end of a file, trying to open a malformed URL, or some other
error associated with input or output. There are about sixteen subclasses of IOException and thirty-three other subclasses
of Exception in JDK 1.2. Class Exception has other subclasses also.

7.2—
Advertising Exceptions

If a Java method generates an exception, its header may choose (in some cases it is required) to include a reference to
the type of exception that might be generated within the method – that is, advertise the exception using the throws
keyword.

For example, the readLine() method in class java.io.BufferedReader has the following signature:

public String readLine() throws IOException;

The above signature indicates the possibility that things may go wrong and the method may throw an object of type
IOException . This warns and requires any caller to set up an exception -handling mechanism.

The Java language specification refers to subclasses of Error or RuntimeException as unchecked . A very large number
of exceptions in the JDK are subclasses of RuntimeException. All other exceptions are called checked exceptions.
Different rules apply for advertising and/or handling checked versus unchecked exceptions.

You are not required to advertise every possible exception your method may throw. You are not required to advertise
any errors. Only the first two (shown

1 This is a poorly named class since all exceptions are really runtime exceptions.

Page 122

in boldface type) of the following four situations require you to advertise that an exception may be thrown in your
method:

1. Your method invokes a method that throws a checked exception; and, your method chooses to not handle the
exception (e.g., your method uses readLine() from class BufferedReader).

2. You detect an exception and throw a checked exception with the throw statement . The identifier throw is a
reserved word in Java.

3. You make a programming error that generates a runtime exception.

4. An internal error occurs in Java.

Sometimes a method may throw several types of checked exceptions. Each must be advertised in the function header
using a throws clause. An example is the following:

class FileApp {

 public Image loadPicture (String fileName)
 throws EOFException, MalformedURLException {
 . . .
 }

As indicated earlier you do not have to advertise an Error. Errors are out of control of the programmer. You also do not
have to advertise exceptions inheriting from RuntimeException. These exceptions are within your control; your program
should be designed so they do not occur. The Java virtual machine has a default mechanism for handling all exceptions
and errors.

A method must advertise all the checked exceptions it throws. It must also advertise or handle all checked exceptions
thrown by any of the methods it invokes. The Java compiler will notify the programmer of any required but missing
exception declarations.

Listing 7.1 illustrates a number of methods that throw checked and unchecked exceptions. A simple menu allows the
user to choose one of the three commands in class Advertise for execution. Each of the three commands illustrates a
variation on generation/advertising of checked or unchecked exceptions. For all exceptions in this example, exception
handling is done by the runtime system. The runtime system has a default-handling mechanism (described later) for all
exceptions and errors.

Command required() invokes method clone(), defined in Object. It requires that class Advertise implement the
Cloneable interface (not done in the Listing). If this contract is not honored then method clone() throws a
CloneNotSupportedException. Since CloneNotSupportedException is a checked exception, advertising is required.
Notice that both required() and main must advertise the exception.

Command notRequired() throws an ArrayIndexOutOfBounds exception because of the erroneous attempt to access an
invalid index in array . This is a runtime exception that is not required to be advertised.

Page 123

The third command, mixed(), is a little more involved. It takes an input class name string and creates a new instance of
the indicated class using methods found in java.lang.Class . There are a number of ways this operation may fail. The
JDK documentation tells us that static method forName throws a checked exception, ClassNotFoundException. Method
newInstance throws two checked exceptions (InstantiationException and IllegalAccessException) plus two unchecked
exceptions (ExceptionInInitializerError and SecurityException). The checked exceptions must be advertised as shown.

Since required() and mixed() advertise the checked exceptions they may receive, the main function must also advertise
them (we will show later how any method may choose to handle exceptions as an alternative to advertising).
Additionally, main advertises an IOException as required by method readLine() in java.io.BufferedReader. As a final
touch and an introduction to the next section, we choose to throw a new java.util.NoSuchElementException (a runtime
exception) if the user enters anything other than 1, 2, or 3 while executing the program options.

The Java compiler is very helpful in letting the programmer know which exceptions must be advertised. Should the
programmer fail to advertise a checked exception, the compiler halts with an error that specifically states which
exceptions must be advertised by which methods in the program. The Java documentation also provides this
information.

Listing 7.1 Advertising Exceptions – The throws Clause

/** Advertising exceptions
*/
import java.io.*;
import java.util.*;

public class Advertise {

 int value = 6;

 // cloning – throws checked exception
 public void required () throws CloneNotSupportedException {
 Advertise ad = (Advertise) this.clone();
 }

 // array index – throws unchecked exception
 public void notRequired () {
 int [] array = new int[3];
 array[3] = 25;
 }
 // instantiation – throws both checked and unchecked exceptions
 public void mixed (String name) throws ClassNotFoundException,
 InstantiationException,
 IllegalAccessException {

TE
AM
FL
Y

Team-Fly®

Page 124

 System.out.println("New instance of" + name + ": "
 + Class.forName(name).newInstance());
 }
 // main must advertise all checked exceptions
 static public void main (String [] args)
 throws CloneNotSupportedException,
 ClassNotFoundException,
 InstantiationException,
 IllegalAccessException,
 IOException {

 BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));
 Advertise ad = new Advertise();

 System.out.println(''Cloning--------- 1");
 System.out.println("Array index----- 2");
 System.out.println("Instantiation--- 3");
 System.out.print("\nEnter number:");
 String choice = keyboard.readLine();
 System.out.println(choice);

 if (choice.equals("1"))
 ad.required();
 else if (choice.equals("2"))
 ad.notRequired();
 else if (choice.equals("3")) {
 System.out.print("Enter a class name:");
 String name = keyboard.readLine();
 ad.mixed(name);
 }
 else // throw an unchecked exception – no need to advertise
 throw new NoSuchElementException("No such choice");
 }
}

7.3—
Throwing an Exception

Since exceptions are objects, the syntax that must be used is:

throw new SomeExceptionClass();

In general when throwing an exception:

1. Find an appropriate predefined exception class (or write your
own).

Page 125

2. Construct an object of that exception class.

3. Throw (using reserved word throw) the exception object.

All exception classes provide constructors allowing the user to initialize a string parameter, message (there is a default
message), which describes the problem that caused the exception. This message string may be used to provide useful
information to the user. An example is:

throw new EOFException("End of file error occurred in method getData");

Once a method throws an exception the method does not return to its caller. Control is transferred to the exception
handler, if any (see Section 7.5). If no exception handler has been defined, program execution terminates if the
application is a non-GUI application and displays the message in a console window if the application is a GUI
application. GUI applications continue running in the presence of an exception (although not always properly). When
debugging a GUI application it is advisable to keep a console window open to detect exceptions.

If you redefine a method from a superclass in your subclass, the subclass method cannot throw more checked exceptions
than the superclass method that you redefine. If no checked exceptions are thrown by the superclass method, then the
subclass must throw none. This is consistent with the constraint that a polymorphically redefined method in a subclass
must have exactly the same signature that it has in the parent class.

When a method declares that it throws an exception that is an instance of a particular checked exception class, it may
throw an exception of that class or any of its descendent classes. Declaring it to throw Exception allows an instance of
any exception subclass to be thrown. Declaring it to throw a specific exception subclass provides more precise
information on what the exception is.

7.4—
Creating Exception Classes

A method that you write may need an exception object not available in the standard Exception classes. You must extend
your exception class from one in the Exception hierarchy. A highly contrived example is shown in Listing 7.2, which
throws a SpecialFileException on encountering a 'Z' character while reading a file. Notice that the only thing unique
about this exception class is its name; this is typical of all exception and error classes. In essence we are cataloging
exceptions and errors by unique class names and the value of their contained message strings.

Listing 7.2 Creating a Custom Exception Class – Selected
Details

class SpecialFileException extends IOException {
// Thrown when reading letter 'Z' in a file

 // Constructors
 public SpecialFileException() {}

Page 126

 public SpecialFileException (String message) {
 super(message);
 }
}

class SpecialFileReader {
 public String readSpecialData (BufferedReader in) throws
 SpecialFileException {
 // Throws exception if file contains letter 'Z'
 . . .
 while (. . .) {
 if (ch == 'Z') // character 'Z' encountered
 throw new SpecialFileException(''Z encountered");
 . . .
 }
 . . .
 }
}

7.5—
Handling Exceptions

Any method that can receive an exception from one of its statements may choose to handle the exception rather than
pass it along with a throws clause (required only for checked exceptions). The method may choose to handle both
checked and unchecked exceptions. Exception handling in Java is done with try/catch blocks. The structure of these
blocks is:

try {
 code that may generate an exception
}
catch (ExceptionType1 ex) {
 code that handles an exception of ExceptionType1
}
catch (ExceptionType2 ex) {
 code that handles an exception of ExceptionType2
}
 . . .

If any statement inside the try block throws an exception, the remainder of the try block is skipped. Control is transferred
to the catch block that handles the specific exception. If none of the catch blocks handle the type of exception generated,
the method containing the try/catch blocks exits and control goes to the default exception handler. If no statement in the
try block throws an exception, then the code in the try block executes normally and all catch clauses are skipped.

Page 127

If you declare the ExceptionType to be Exception, any exception will be trapped since all exception classes are derived
from class Exception. When using multiple catch clauses, it is not advisable to use exception types that are hierarchically
related. The result may be a compiler error or cause one or more catch clauses to be unreachable.

In general if the code of your method invokes (calls) one or more functions that throws a checked exception, you must
handle the exception with try/catch blocks or pass the exception on by advertising that your method throws that type of
exception. The choice of whether to handle or throw an exception is best made on an individual basis. A checked
exception may be passed all the way to the runtime system using the throws clause at each calling level (as done in
Listing 7.1). The default handling mechanism is to halt and display a default error message. Although not required, the
programmer may optionally choose to handle unchecked exceptions as well by using a try/catch block or ignore them
and let the runtime use its default-handling mechanism.

7.6—
The Finally Clause

When the code in a method throws an exception it does not execute the remaining code in the try block. Since the try
block did not finish its work, some resources such as opened files or graphics contexts may need to be cleaned up. The
optional finally clause allows this to be done.

An example is the following:

Graphics g = image.getGraphics();
try {
 Some code that might throw exceptions
}
catch (IOException ex) {
 Exception handling code
}
finally {
 g.dispose();
}

The g.dispose() will be executed after the exception-handling code. You can have a finally clause without a catch clause.
In this case if an exception occurs in the try block, all the code in the finally block will be executed before the program
terminates.

7.7—
Putting It All Together – An Example

Listing 7.3 presents details of class ExceptionGenerator , designed to illustrate some of the properties of exceptions. This
class contains methods that generate several different kinds of standard exceptions in Java. Some are checked and some
are unchecked.

Page 128

Listing 7.3 Class ExceptionGenerator

/** Generates various kinds of exceptions
/
import java.io.*;

public class ExceptionGenerator {

 // Fields
 Counter myCounter;
 // Commands

 public void incrementCounter () {
 // Generate a NullPointerException - runtime
 myCounter.increment();
 }

 public void divideByZero () {
 // Generate an ArithmeticException - runtime
 int y = 6, x = 0;
 int z = y / x;
 System.out.println (''z = " + z);
 }

 public void arrayOutOfBounds () {
 // Generate an ArrayIndexOutOfBoundsException - runtime
 int [] data = new int [10];
 data[10] = 16;
 System.out.println ("data[10] = " + data[10]);
 }

 public void badCast () throws IOException {
 // Generate a NumberFormatException - runtime
 BufferedReader keyboard = new BufferedReader (
 new InputStreamReader (System.in));
 System.out.print ("Enter an integer: ");
 String line = keyboard.readLine();
 int value = (new Integer(line)).intValue();
 System.out.println("value = " + value);
 }

 public void numericInput () {
 try {
 // Have user input a string representing a number
 BufferedReader keyboard = new BufferedReader (
 new InputStreamReader(System.in));
 System.out.print ("Enter an integer: ");
 String line = keyboard.readLine();
 int value = (new Integer(line)).intValue();

Page 129

 System.out.println("value = " + value);
 }
 catch (IOException ex) {
 System.out.println (
 ''IO exception in reading user input.");
 }
 catch (NumberFormatException ex) {
 System.out.println ("Invalid integer entered.");
 }
 }

 public void numericInputWithException () {
 try {
 // Have user input a string representing a number
 BufferedReader keyboard = new BufferedReader (
 new InputStreamReader (System.in));
 System.out.print ("Enter an integer: ");
 String line = keyboard.readLine();
 int value = (new Integer(line)).intValue();
 System.out.println("value = " + value);
 }
 catch (IOException ex) {
 System.out.println (
 "IO exception in reading user input.");
 }
 }
}

Method incrementCounter attempts to send a message to an uninitialized object, myCounter, causing a
NullPointerException (unchecked) to be thrown. Method divideByZero throws an ArithmeticException (unchecked) to
be thrown. Method arrayOutOfBounds throws an ArrayIndexOutOfBoundsException (unchecked) when trying to access
an invalid index.

Method badCast can throw an IOException (checked) for serious I/O failure or a NumberFormatException (unchecked)
for an incorrectly entered number (must be a valid integer string).

Method numericInput also invokes methods that can throw an IOException (checked) or a NumberFormatException
(unchecked). It chooses to handle both exceptions by displaying a custom error message in the console.

Method numericInputWithException chooses to handle the potential IOException but not the NumberFormatException .
This choice eliminates the need for a throws clause and places any exception handling for number format errors on the
user.

Listing 7.4 presents an application class that allows the user to select and generate the various exceptions in class
ExceptionGenerator .

Page 130

Listing 7.4 Class ExceptionsApp

/** Illustrates exception handling
*/
import java.io.*;

public class ExceptionsApp {
 // Fields
 ExceptionGenerator except = new ExceptionGenerator();
 int choice;
 BufferedReader keyboard = new BufferedReader (
 new InputStreamReader(System.in));

 // Commands
 public void generateExceptions () {
 System.out.println (''1 --> Null pointer");
 System.out.println ("2 --> Divide by zero");
 System.out.println ("3 --> Array index range error");
 System.out.println ("4 --> Bad cast");
 System.out.println ("5 --> Bad numeric input");
 System.out.println ("6 --> Trap bad numeric input");
 System.out.print("Enter choice: ");
 try {
 choice = (new Integer(keyboard.readLine())).intValue();
 }
 catch (IOException ex) { // do nothing
 }
 switch (choice) {
 case 1:
 except.incrementCounter();
 break;
 case 2:
 except.divideByZero();
 break;
 case 3:
 except.arrayOutOfBounds();
 break;
 case 4:
 try {
 except.badCast();
 }
 catch (IOException ex) {} // Unhandled exception
 break;
 case 5:
 except.numericInput ();
 break;

Page 131

 case 6:
 try {
 except.numericInputWithException();
 }
 catch (NumberFormatException ex) {
 try {
 // Second and final chance
 except.numericInputWithException ();
 }
 catch (Exception e) {}
 }
 finally {
 System.out.println (''In finally block.");
 }
 break;
 }
 }

 public static void main (String[] args) {
 ExceptionsApp app = new ExceptionsApp ();
 app.generateExceptions();
 }
}

Notice that, for case 6, in function main, we choose to handle the NumberFormatException that may be generated by
method numericInputWithException by allowing the user one additional chance to enter a correct integer. Statements in
the finally block are executed after a correct input (valid number) or after the second chance is completed (for an invalid
numeric input).

The switch statement in Listing 7.4 allows the user to experiment with each of the exception conditions in class
ExceptionGenerator . After each exception, the program terminates so the user may wish to run the program several
times.

7.8—
Catching Runtime Exceptions – An Example

Instances of RuntimeException and its subclasses are unchecked exceptions. Recall that unchecked exceptions always
have a default exception handling mechanism in the runtime system without the need for a throws statement. The user is
not required to catch or advertise these exceptions. However, the user does have the option to catch and handle the
exceptions. This option was exercised in the numericInputWithException option in ExceptionsApp. As a further
illustration we examine the difference between the default exception handler and a custom exception handler in the next
two listings. Class StringIndex shown in Listing 7.5 uses the default exception handler and verifies that execution stops
at the point of occurrence of an exception.

Page 132

Listing 7.5 Class StringIndex

/** Unchecked exception - no throws statement required in signature
* Default exception handler
*/

class StringIndex {

 static public void main (String args[]) {
 String myString = new String(''Hello");
 System.out.println("myString[5] is: " + myString.charAt(5));
 System.out.println("Execution stops on exception");
 }
}

The main function in class StringIndex attempts to access index 5 of myString , which has index values from 0 to 4. A
StringIndexOutOfBoundsException in package java.lang is thrown and handled by the runtime system as indicated
below.

On running the program, we get the following output in the console window. The program terminates.

java.lang.StringIndexOutOfBoundsException: String index out of range: 5
Application Exit . . .

The user may optionally choose to catch and handle the exception to provide customized information about its source.
The example shown in Listing 7.6 illustrates this option. The program terminates with the indicated output(in the
console window) when the exception occurs.

Listing 7.6 Class StringIndex

class StringIndex2 {
 static public void main (String args[]) {
 String myString = new String("Hello");
 try {
 System.out.println("myString[5] is: "
 + myString.charAt(5));
 }
 catch (java.lang.StringIndexOutOfBoundsException ex) {
 System.out.println("Exception: (index = " + index
 + ") Max index in myString is: "
 + (myString.length()- 1));
 }
 }
}

Page 133

// Output in console window
Exception: (index = 5) Max index in myString is: 4

Clearly, the attempt to access index 5 of myString is a programming error that should be corrected instead of adding all
the try/catch code to the example. How then can we justify catching exceptions generated by programming errors? If the
block of code were large, with a complex algorithm for calculating the value of index, a try/catch block could be useful
while testing the program. Of course, a good debugger could do the same thing without cluttering the source code. As a
general rule, one should use exception-handling code sparingly.

7.9—
Summary

Key points to remember about errors and exceptions include the following.

• Errors and exceptions may occur because of hardware problems, software glitches, or misuse of a program and may
cause a program to crash with dire effects.

• Languages that support exception handling allow the software developer to catch and handle exceptions in a graceful
way. Java provides a rich hierarchy of exception and error classes under class Throwable .

• Exceptions in Java come in two flavors – checked and unchecked. Checked exceptions that can be thrown within a
calling method require that the calling method either advertise (by passing responsibility up the calling chain) the
exception using a throws clause in its method header or handle the exception using a try/catch clause. There is no need
to advertise errors or unchecked exceptions. Unchecked exceptions may be optionally handled with a try/catch clause.
Errors should not be handled since they represent serious irrecoverable conditions. The best you can do is display a
custom message in the console window. The runtime system has a default handling mechanism for all exceptions and
errors.

• The optional finally part of a try/catch clause provides a way to clean up unfinished business as a result of an exception
being thrown.

7.10—
Exercises

1 Test and verify the results of all listings in this chapter. Write a brief description of each kind of exception capable of
being generated including its cause and a brief discussion of the pros and cons of attempting to continue program
execution after handling the exception. In other words, can the exceptional condition be fixed to allow continuation of
the program?

2 Draw a complete hierarchical diagram of all the Throwable subclasses. You may use a class diagram tool or a simple
indented list. Include a brief description of each class. Details are available in the Java documentation.

3 Currently the generateExceptions() method in Listing 7.4 prompts the user to enter a number indicating a choice. The
chosen example is then executed

TE
AM
FL
Y

Team-Fly®

Page 134

and the program terminates. If the user enters other than a digit between 1 and 6, the application crashes with
NumberFormatException. Modify the code to catch the exception thrown by a bad choice, notify the user of the required
inputs, and redisplay the menu of choices. Also modify option 6 to allow an unlimited number of retries.

4 Build a GUI version of ExceptionsApp called ExceptionsUI that represents each kind of exception by a radio button.
Run the program and report on your results.

Page 135

8—
Recursion

An essential and important part of computer problem solving is the development of algorithms – the detailed logic and
steps required to solve a problem. All programmers are introduced very early to a number of useful programming
constructs for building algorithms. These include assignment, branching, and iteration. Branching provides a means for
conditional or alternative execution of steps in an algorithm. Iteration provides a convenient way to perform repetitive
steps. Without branching and iteration the algorithms for even simple problem solutions would be either impossible or
verbose and cumbersome. Another useful concept for construction of algorithms is recursion. Recursion is a construct
that provides an alternative to iteration for repetitive steps. In many problems requiring repetitive steps we may find
equivalent iterative and recursive algorithms as solutions.

What is recursion? A recursion may be described as the process of executing the steps in a recursive algorithm. So what
is recursive? We sometimes tell our students, ''If you look up 'recursive' in the dictionary, its definition is 'see recursive.'"
We deduce from this anecdotal definition that a recursive algorithm is defined in terms of itself. The actual definition
found in one dictionary,1 "pertaining to or using a rule or procedure that can be applied repeatedly," is not very helpful.

In developing an understanding for recursion we rely on its use in mathematics, algorithms, and computer programming.
From mathematics we find recursive functions defined in terms of themselves. In algorithms we create a specific block
of steps (a function), wherein one of the steps in the function invokes the function itself. When the recursive algorithm is
implemented in a programming language, we have a function that calls itself. As an example we define a recursive
command in Java as

public void recursive () {
 recursive();
}

This command is recursive; however, it is pretty boring and useless. Additionally, it has the problem of calling itself in
an infinite loop. Since computers do not have

1 Abstracted from Webster's College Dictionary, Random House, New York 1995.

Page 136

infinite resources, this method (if invoked) will cause the program to crash with a StackOverflowException. This tells us
something about the way recursions are processed; they use a Stack (an important data structure covered in Chapter 11).
In Section 8.1 we develop a list of essential properties for a well -behaved (and useful) recursive
algorithm/function/implementation. In other sections we show the relationship between iterative and recursive solutions
to the same problem, discuss the relative complexity of recursion, and present examples that illustrate single and double
recursion.

8.1—
Properties for a Well -Behaved Recursion

8.1.1—
Essential Properties and Terminology

From our description and definition of recursion we may deduce the first and most important property of a well-behaved
recursion. It must be recursive. Given a function, algorithm, or implementation, it must satisfy the essential property
stated as:

Recursion essential property #1 – A recursive function, algorithm, or implementation is defined in terms of
itself.

A classic example from mathematics that is easily represented as an algorithm and implementation is the factorial
function, n-factorial:

n! = n * (n – 1)!

where n is a non-negative integer and 0! = 1.

Alternatively, n! is the cumulative product of all integers from n down to 1:

n! = n * (n – 1) * (n – 2) * (n – 3) * . . . * (2) * (1).

Satisfying property #1, we may implement a Java function for the factorial of n as:

public int factorial (int n) {
 return n * factorial(n - 1);
}

This implementation has the same problem as our recursive() function; it recurses infinitely and causes a stack overflow.
Furthermore, factorial is not defined for negative integers. For any input parameter value, n, the above implementation
will eventually evoke factorial of a negative number. We need a logical way to stop the recursion. This is typically
accomplished using a conditional test on the value of a sentinel parameter.

Recursion essential property #2 – A recursive function, algorithm, or implementation must have a sentinel
parameter. The recursion continues or stops conditional on the value of this sentinel parameter .

Page 137

For the factorial example, the condition required for recursion to continue is clearly stated as part of the defining
function – n must be a non-negative integer. The parameter n is the sentinel. The recursion continues only if the current
value of n is non -negative. We may easily modify our Java implementation to include a test of this sentinel. For n = 0 we
stop the recursion and return 0!, which is equal to 1 by definition.

By including a test on the value of our sentinel parameter, n, we get an implementation of factorial that satisfies
properties #1 and #2.

public int factorial (int n) {
 if (n > 0)
 return n * factorial(n - 1);
 else
 return 1;
}

The third essential property for recursion is closely related to property #2 in that it helps stop the recursion. Suppose, for
example, we erroneously implement factorial as:

public int error (int n) {
 if (n > 0)
 return n * error(n + 1);
 else
 return 1;
}

The typographical error that invokes error(n +1) drives the value of the sentinel parameter in a direction that never
allows it to stop the recursion. We again get an eventual stack overflow. This leads to property #3.

Recursion essential property #3 – A recursive function, algorithm, or implementation must drive the value of its
sentinel parameter in a way to eventually stop the recursion .

Our correct implementation for factorial satisfies this property as well. On each recursive invocation of factorial, the
value of n is decremented by one. It will eventually reach a value of zero and stop the recursion.

The following additional terms for describing a recursion are by no means standard; however, they are useful in
describing the steps in a recursion.

Recursive level – Each recursive call has its own level. The first time a recursive method is invoked, we enter the
method at level 1. The second call enters the method at level 2 and so on.

Going in/Backing out – On entering a recursive method we talk of ''going in" to deeper levels. This continues until
the sentinel stops the recursion. We

Page 138

then talk of''backing out" of the recursion. A well-executed recursion goes in n levels (one level at a time) and
then backs out n levels (one level at a time). We also say that the recursion "bottoms out " when stopped by the
sentinel.

8.1.2—
Steps in Executing a Recursion

We give a brief description of what happens while a recursive implementation is executed. It is helpful to use a simple
example and show graphically what happens. Using pseudocode we develop a recursive function called single(int n),
where n is the sentinel parameter. Details for single are given in Listing 8.1.

Listing 8.1 A Recursive Function in Pseudocode

function single (int n) {
 if (n > 0) {
 statement1;
 single(n - 1);
 statement2;
 }
}

An invocation of function single(2) causes the sequence of steps shown in Figure 8.1 to occur. At each level, the runtime
system stores an independent copy of n whose value is one less than at the previous level. The arrows indicate the
sequence of steps. When the recursive call is encountered all processing at the current level is stopped and control passes
to the next deeper level. On "backing out" of the recursion (after the sentinel stops the recursion), control returns to the
precise point at which processing was stopped on "going in." In our example, control returns to statement2.

In this simple example, the sequence of execution for the statements that are part of the recursion is given by:

statement1; (at level 1; n has value = 2)
statement1; (at level 2; n has value = 1)
 <sentinel stops recursion; n has value = 0>
statement2; (at level 2; n has value = 1)
statement2; (at level 1; n has value = 2)

Statements prior to the recursive call are executed on going into the recursion; and, statements after the recursive call are
executed on backing out of the recursion. The value of n at each level is preserved on going in and on backing out. The
same is true for any local parameters that may be part of the recursive function.

8.2—
Iteration Versus Recursion

As mentioned earlier most problems have both an iterative and recursive solution. In this section we present both
solutions for two examples. The first example is

Page 139

Figure 8.1.
Graphical tracking of a simple recursion.

one for which an obvious recursive solution applies. The second example is one for which an obvious iterative solution
applies.

8.2.1—
Finding an Iterative Solution for a Recursive Problem

As an example of a problem with an obvious recursive solution, suppose we wish to prompt the user for an unspecified
number of input strings and display the strings in the reverse order of their entry. How might we do this recursively?
Recall from the previous section that statements before a recursive call are executed in order while going into a
recursion and statements after a recursive call are executed in reverse order while backing out of the recursion. This
maps nicely into the stated problem. A statement before the recursive call will prompt the user and accept an input
string. A statement after the recursive call will display the string. The user may enter a special string (the character 'q') as
a sentinel to stop the recursion.

Listing 8.2 shows a recursive solution to this problem. Prompting for user input is delegated to a helper method,
promptForString() , to reduce clutter caused by necessary programming details and to focus on the recursive method
logic.

Page 140

Listing 8.2 Recursive Problem Solution – Example 1

public void getString () {
 String str = promptForString();
 if (!str.equals(''q")) {
 getString();
 System.out.println(str);
 }
 else
 System.out.println("Reversed list");
}

On analyzing the example in Listing 8.2 we find that local parameter str is the sentinel parameter. Further its value is
determined at each recursive level by the user in responding to promptForString() . Notice also that the input statement is
outside the sentinel test block, whereas the normal output statement is inside the sentinel test block. This recursive
function continues until the user enters q as a string. After the user enters q, the recursion stops. It executes the else
clause only one time; then it starts backing out. On backing out it invokes the System.out.println() statement at each
level, skipping the else clause.

As an example of the output obtained with this method, consider the following sequence of prompts and user inputs (in
boldface). When the user enters q, the recursion stops and displays the output as indicated.

Enter string: Hello
Enter string: How are you?
Enter string: Goodbye
Enter string: q
Reversed list
Goodbye
How are you?
Hello

One thing we notice about this solution is its compactness. Where are all the different values of str stored? They are
stored on the system stack (we will learn all about stacks in Chapter 11) and then retrieved on backing out of the
recursion.

Now let's build an iterative solution to the same problem. With an iterative solution we must take charge of storing the
entered strings in a structure that allows them to be accessed in reverse order for display. There are many options for a
solution in Java, including an array or a Vector. Since the size of an array is static it is not a good conceptual match to a
problem with an undetermined number of entries. After a discussion of Stack in Chapter 11, you may wish to revisit this
problem. Using our current limited set of tools, we give a solution in Listing 8.3. Parameter v is an instance of java.util.
Vector that is initialized external to method getString().

Page 141

Listing 8.3 Iterative Problem Solution – Example 1

public void getString () {
 String str = promptForString();
 while (!str.equals(''q")) {
 v.addElement(str);
 str = promptForString();
 }
 System.out.println("Reversed list");
 for (int i = v.size() - 1; i >= 0; i--)
 System.out.println(v.elementAt(i));
}

How does the iterative solution compare with the recursive solution? Since the problem is simple, both solutions are
simple. We suggest the recursive solution is more elegant; however, one may argue that its elegance comes from the fact
that many of the details are being handled by the runtime system. The more important point is that both approaches
produce a correct solution. The recursive solution is more compact and has fewer lines of code (a potential advantage for
readers of the code).

8.2.2—
Finding a Recursive Solution to an Iterative Problem

A problem that seems to be a natural for an iterative solution is one that must find the average of an array of numbers.
The solution is to iterate over the array, computing the sum of all numbers, and then divide by the size. A simple
solution is presented in Listing 8.4 using this iterative approach. Parameter reals is an array of type double initialized by
the calling program.

Listing 8.4 Iterative Problem Solution – Example 2

public double getAverage (double [] reals) {
 double sum = 0.0;
 for (int i = 0; i < reals.length; i++)
 sum += reals[i];
 return sum / reals.length;
}

Next we consider a recursive solution to this problem. We must first find a way to express the average of an array of
numbers in terms of itself. The only approach is to find the average of an array of n numbers in terms of the average of
an array of the first n - 1 numbers of that array. From the definition of average we have:

For an array of numbers, x[i]; i = 1 . . .n, the average is

Page 142

If we factor out the nth term we get

The summation term with a little massaging can be expressed in terms of the average of the first n - 1 terms in the array,
yielding

This is our recursive function for finding the average of an array of n numbers. The sentinel parameter is n. For n = 1,
the recursion stops and returns x[n]. The average of an array of one number is the number. Figure 8.2 shows this
algorithm in action.

The figure shows the steps in tracking a recursive algorithm where the recursive call is embedded as a function call
within an expression. The value returned at each level is the average of the first n values in the array (based on the value
of n at that level).

Listing 8.5 shows implementation in Java of a recursive average computation done by method getAverage .

Listing 8.5 Recursive Problem Solution – Example 2

public double getAverage (double [] reals, int n) {
 if (n == 1)
 return reals[n - 1];
 else
 return reals[n - 1] / n
 + ((n - 1.0)/n) * getAverage(reals, n - 1);
}

Recursive and iterative solutions are correct and very compact. Notice the concession to Java indexing from 0 to n - 1
for arrays in both Figure 8.2 and Listing 8.5. Also, the (n - 1.0) term in Listing 8.5 is necessary to coerce floating-point
division. Without it (n - 1)/n is always 0 using division of integers.

8.3—
Relative Complexity of a Recursion

Considering that algorithms must lend themselves to both analysis and design, we are interested in how difficult it may
be to analyze and design recursive algorithms. So far we have seen two useful recursive algorithms that were not too
difficult to analyze or design. With more complex recursive algorithms we find that humans do not find recursive
thinking to be natural. In this section we look at some of the options and features that make a recursive algorithm
difficult to understand and techniques for managing that difficulty.

Page 143

Figure 8.2.
Graphically tracking a recursive algorithm for average.

Among the features of a recursive algorithm that impact its perceived complexity are the following.

Degree of recursion – A recursive algorithm may have one or more recursive calls in it. A single recursive call has
degree one; an algorithm with two recursive calls has degree two, and so on. The ability to track the steps in a single
recursion is usually achieved with a little practice and the use of graphical tools such as illustrated in Figure 8.2.

TE
AM
FL
Y

Team-Fly®

Page 144

For degree two recursions, the difficulty of tracking steps goes up by an order of magnitude. After much practice
coupled with an understanding of binary trees, the analyst may find tracking of double recursions to be relatively
straightforward. There is a natural mapping between the structure of a binary tree and double recursion.

Relative position of recursive statements – The positioning of recursive statements within a recursive algorithm can
have an impact on difficulty of understanding. Combinations of executable statements before and/or after the
recursive call may add new complexity. If the recursive call(s) is imbedded in an iterative loop, with possibly
changing loop constraints, the complexity is increased significantly.

We may use a graphical tool to help track the steps in a double recursion by expanding and refining the concept
presented in Figure 8.1 for a single recursion. We distinguish the two recursive calls by going down to the left for the
first and down to the right for the second. Consider the simple double recursion algorithm shown in Listing 8.6. All
details including the sentinel test are left out except for the double recursive calls. Assume the recursion stops when
sentinel parameter i <= 0. If this method is invoked with an initial value of i = 7, the recursive steps are as indicated in
Figure 8.3. Additional complexity appears when we add statements before, between, and/or after the recursive calls.

Figure 8.3.
Graphical tracking of a double recursion.

Page 145

Listing 8.6 Doubly Recursive Algorithm

double (int i) {
 if (i > 0)
 double(i / 2);
 double(i / 2);
}

We will learn more about binary trees and double recursion in Chapters 14 and 15.

8.4—
Examples of Single and Double Recursion

In this section we present two Java classes that illustrate a number of single and double recursions.

Listing 8.7 provides details for class Recursion1, which includes eight single recursion examples. Output produced by
each recursive method is included as a comment following the method in the listing. A brief description of the eight
recursive methods is given below.

replicator – recursively print a string a specified number of times.

factorial – return the factorial of a number. The type double is used to extend the range of computable factorials.

average – compute the average of an array of numbers.

earlycall – a simple example where the recursive call occurs first.

latecall – a simple example where the recursive call occurs last.

findlargest – find the largest value in an array.

binsearch – use binary search algorithm to find an element in an array. This method invokes a private, recursive
method binarysearch that does the work.

In addition to a main function there is a static method pause that allows the user to set a time delay between tests of the
various recursive methods. This allows viewing of the results before scrolling to the next test.

Listing 8.7 Single Recursion Examples – Class Recursion1

/** File Recursion1.java - illustrating single recursion examples
*/
import java.io.*;

public class Recursion1 {

 // print string, count times
 public void replicator (String string, int count) {

Page 146

 if (count > 0) {
 System.out.println(''Count = " + count
 + ", string is: " + string);
 replicator(string, count - 1);
 }
 }
/*
Test of recursive function, replicator
Count = 10, string is: Hello
Count = 9, string is: Hello
Count = 8, string is: Hello
Count = 7, string is: Hello
Count = 6, string is: Hello
Count = 5, string is: Hello
Count = 4, string is: Hello
Count = 3, string is: Hello
Count = 2, string is: Hello
Count = 1, string is: Hello
*/

 // return the factorial of num
 public double factorial (double num) {
 if (num > 0.0)
 if (num == 1)
 return 1.0;
 else
 return(num * factorial(num - 1));
 else {
 System.out.println(
 "Factorial not defined for negative numbers");
 return 0.0;
 }
 }
 /*
Test of factorial recursive function
 The factorial of 6 is: 720.0
 */

 // return the average of size numbers in inArray
 public double average (double[] inArray, int size) {
 int index = size - 1;
 if (size == 1)
 return inArray[index];
 else
 return inArray[index] / size + (size - 1.0)/size
 * average(inArray, size - 1);
 }

Page 147

/*
Test of recursive average function
The average of 8 numbers in inArray is: 22.5
*/

 // first statement is recursive call
 public void earlycall (int val) {
 if (val != 0){
 earlycall(val / 2);
 System.out.println(''val = " + val);
 }
 }
/*
Test of recursive call as first statement
val = 1
val = 2
val = 4
val = 8
val = 16
val = 32
val = 64
val = 128
val = 256
*/

 // last statement is recursive call
 public void latecall (int val) {
 if (val != 0) {
 System.out.println("val = " + val);
 latecall(val / 2);
 }
 }
/*
Test of recursive call as last statement
val = 256
val = 128
val = 64
val = 32
val = 16
val = 8
val = 4
val = 2
val = 1
*/

 // return largest int in inArray
 public double findlargest (double[] inArray, int size) {

Page 148

 double temp;
 int index = size - 1;

 if (size == 1)
 return inArray[0];
 else{
 temp = findlargest(inArray, size - 1);
 if (temp > inArray[index])
 return temp;
 else
 return inArray[index];
 }
 }
/*
Test of recursive function to find largest in array
The largest of 8 numbers in inArray is: 40.0
*/

 // use binary search to find val in sorted inArray
 // return index in array of val if found; -1 if not found
 public int binsearch (double[] inArray, double val, int size) {
 return binarysearch(inArray, val, 0, size-1);
 }

 // searches for index of val in inArray between low and high
 private int binarysearch (double[] inArray,
 double val, int low, int high) {
 int mid;
 if (low > high)
 return -1; // val not in inArray
 else {
 mid = (low + high) / 2;
 if (val == inArray[mid])
 return mid;
 else {
 if (val < inArray[mid])
 return binarysearch(inArray, val, low, mid - 1);
 else
 return binarysearch(inArray, val, mid + 1, high);
 }
 }
 }
/*
Test of binary search for val in a sorted array
Binary search for value = 20.0 gives index = 3 (-1 means not found)
Binary search for value = 12.0 gives index = -1 (-1 means not found)
*/

Page 149

 public static void main (String[] args) throws IOException {
 String greeting = ''Hello";
 int count = 10;
 int num = 6;
 int size = 8;
 double[] inArray;
 int val = 256;
 double value;
 Recursion1 recursion = new Recursion1();

 BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.print(
 "Enter time delay between experiments (seconds): ");
 int sec = new Integer(br.readLine()).intValue();

 // test of recursive function, replicator
 System.out.println(
 "Test of recursive function, replicator\n");
 recursion.replicator(greeting, count);
 Recursion1.pause(sec);

 // test of recursive function, factorial
 System.out.println(
 "Test of factorial recursive function\n");
 System.out.println("The factorial of " + num + " is: "
 + recursion.factorial(num));
 Recursion1.pause(sec);

 // test of recursive function, average
 System.out.println("Test of recursive average function\n");
 inArray = new double[size];
 for (int i = 0; i < size; i++)
 inArray[i] = 5.0 * (i + 1);
 System.out.println("The average of " + size
 + " numbers in inArray is: "
 + recursion.average(inArray, size));
 Recursion1.pause(sec);

 // Test of recursive function, earlycall
 System.out.println(
 "Test of recursive call as first statement\n");
 recursion.earlycall(val);
 Recursion1.pause(sec);

 // Test of recursive function, latecall
 System.out.println(

Page 150

 "Test of recursive call as last statement\n");
 recursion.latecall(val);
 Recursion1.pause(sec);

 // Test of recursive function for findlargest
 System.out.println(
 ''Test of recursive function to find largest in array\n");
 System.out.println(
 "The largest of " + size + " numbers in inArray is: "
 + recursion.findlargest(inArray, size));
 Recursion1.pause(sec);

 // Test of recursive function for binary search
 System.out.println(
 "Test of binary search for val in a sorted array\n");
 value = 20.0;
 System.out.println("Binary search for value = "
 + value + " gives index = "
 + recursion.binsearch(inArray, value, size)
 + " (-1 means not found)");
 value = 12.0;
 System.out.println("Binary search for value = "
 + value + " gives index = "
 + recursion.binsearch(inArray, value, size)
 + " (-1 means not found)");
 Recursion1.pause(sec);
 }

 public static void pause (int seconds) {
 System.out.println("---wait " + seconds + " seconds---");
 long time = System.currentTimeMillis();
 while(System.currentTimeMillis() - time < 1000 * seconds) {}
 System.out.println();
 }
}

Listing 8.8 shows details for class Recursion2, which presents two examples of double recursion. The first method,
inOrderPrint() , simply prints the sentinel value as a statement between the two recursive calls. The second method,
permute(), accepts an array of characters and prints all permutations of the array. For an array of size n, there are n!
permutations. Method permute() is doubly recursive; however, it is difficult to track because the second recursive call is
embedded in a for loop with level-dependent loop parameters. The main function prompts for user input to control both
recursion examples. The reader is encouraged to type in details for both Recursion1 and Recursion2 and run the
examples.

Page 151

Listing 8.8 Double Recursion Examples - Class Recursion2

/** A simple class to illustrate double recursion
*/
import java.io.*;

public class Recursion2 {

 // illustrate double recursion by printing values
 public void inOrderPrint (int index) {
 if (index > 0) {
 inOrderPrint(index/2);
 System.out.println(''Index = " + index);
 inOrderPrint(index/2);
 }
 }

 // compute and display all permutations of an array of characters
 // uses a variation of double recursion
 public void permute (char[] inArray, int size) {
 int index = size - 1;
 char temp;

 if (size > 1) {
 permute(inArray, index);
 for (int i = index - 1; i >= 0; i--) {
 temp = inArray[index];
 inArray[index] = inArray[i];
 inArray[i] = temp;
 permute(inArray, index);
 temp = inArray[index];
 inArray[index] = inArray[i];
 inArray[i] = temp;
 }
 }
 else {
 for (int j = 0; j < inArray.length; j++)
 System.out.print(inArray[j]);
 System.out.println();
 }
 }

 public static void main (String[] args) throws IOException {
 char[] inArray;
 int index;
 Recursion2 recurse = new Recursion2();
 BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));

Page 152

 System.out.print(
 ''Enter an index (int) for doubly recursive print: ");
 index = (new Integer(br.readLine())).intValue();
 recurse.inOrderPrint(index);
 System.out.print(
 "Enter a string for permutation (keep it short): ");
 String str = br.readLine();
 inArray = new char[str.length()];
 // copy str into inArray
 str.getChars(0, str.length(), inArray, 0);
 recurse.permute(inArray, inArray.length);
 }
}

8.5—
Summary

Recursive algorithms provide an alternative way to represent repetitive steps in a problem solution instead of iteration. A
well-behaved recursive function, algorithm, or implementation satisfies the following three essential properties.

Recursion essential property #1 – A recursive function, algorithm, or implementation is defined in terms of itself.

Recursion essential property #2 – A recursive function, algorithm, or implementation must have a sentinel
parameter. The recursion continues or stops conditional on the value of this sentinel.

Recursion essential property #3 – A recursive function, algorithm, or implementation must use its sentinel
parameter in a way to eventually stop the recursion.

The complexity of a recursion depends on the degree (number of recursive calls in its implementation) and, to a lesser
extent, on the relative location of the recursive call(s). Single recursions may be tracked using a simple graphical
technique. Double recursions may be tracked using a graphical binary tree structure.

Many algorithms have both iterative and recursive solutions.

8.6—
Exercises

1 Using a text editor, type in the details for classes Recursion1 and Recursion2. Run both examples for a variety of input
choices and report on your results.

2 Write a recursive method that computes the nth Fibonacci number, F(n) where:

Page 153

3 Implement an iterative solution to the factorial function.

4 Implement an iterative solution to the permutation of characters in an array.

5 Develop a tracking diagram for double recursion (similar to that shown in Figure 8.3), showing the sequence of steps
in executing the recursive permute method of Listing 8.8. Show the diagram for an array of characters given by the
string ''abcd."

6 If we estimate the standard deviation (σx) of an array of numbers, x[i], i = 1 . . .n using

where the mean value is estimated by

develop both iterative and recursive algorithms for the standard deviation. Implement and test each in Java. Your test
program should prompt the user for the value of n and build an array of n random numbers. It should then compute and
display both the mean and standard deviation for the array of numbers.

TE
AM
FL
Y

Team-Fly®

Page 155

PART TWO—
DATA STRUCTURES

Page 157

9—
Abstract Data Types

One of the conceptual pillars supporting object-oriented software development is the abstract data type (ADT). David
Parnas1 and others articulated this concept in the 1960s. For many years this concept has formed the basis for software
construction, both object oriented and otherwise. All of the data structures to be presented in this book are formulated as
abstract data types.

A data type is a program entity holding information that can be manipulated in a disciplined manner through a set of
predefined operations. Predefined operations include commands that may be used to modify the value of the data type
and queries that may be used to access the value of the data type. In the Java programming language an abstract data
type is implemented using the class construct. The information structure (data structure) of the ADT is represented in the
internal (usually private or protected) fields of the class. The commands are represented by methods that return type
void. The queries are represented either by public fields or methods that return a nonvoid type representing field
information.

Many software developers have found that ADTs aid in formulating clear and clean software architecture and promote
greater understandability of the software and easier software maintenance. In structured programming languages such as
C and Pascal the programmer must impose strict protocols in order to utilize ADTs. In the early 1980s two pre –object-
oriented languages, Ada and Modula -2, were specifically designed to support and encourage the use of ADTs. With the
advent of object-oriented technology during and after the late 1980s, the use of ADTs has become a central feature of
software architecture.

In order to illustrate the basic ideas associated with abstract data types and their implementation in Java, this chapter first
presents a simple ADT called Counter and then focuses on a more complex and useful abstract data type called
Fraction . We learn about fractions in grade school and use them throughout our lives; however, except for Smalltalk, no
programming language provides direct support for a type or class called Fraction . The good news is that we can build
our own data abstraction and class for Fraction. Fractions are also called rational numbers since they may be represented
as a ratio of integers. We also introduce in this chapter the concept of a Laboratory application that allows the user to
test

1 Parnas, David, ''On the Criteria to Be Used in Decomposing Systems into Modules," Communications of the ACM , Vol.
15, No. 12, pp. 1053–1058, December 1972.

Page 158

the behavior of abstract data types. We present laboratories for both the Counter and the Fraction abstract data types.

9.1—
Counter ADT

Suppose that we wish to count events in various contexts. Each time an event occurs we wish to increment a counter by
one. We need to be able to access the current value of a counter at any time. We need to be able to reset its value to zero.
That is all.

We do not want to allow a user to set a counter to an arbitrary value (as would be the case with an ordinary integer
variable). We do not want to allow a user to increment the internal count value by more than one in a given step.
Therefore, the behavior of a counter is defined by the following methods (actions):

Counter ADT

1. reset – set internal count value to zero

2. increment – increase the internal count value by one

3. countValue – access the current count value.

We group this behavior into two categories: commands and queries. As indicated earlier, a command is an action that
changes the internal state of an abstract data type without returning information. A query is an action that returns
information about the internal state of the abstract data type without changing this state. The behavior of the ADT is the
totality of its commands and queries. Listing 9.1 shows the Counter ADT implemented as a class.

Listing 9.1 Class Counter

/** Implements the Counter ADT
*/
public class Counter {

 // Fields
 protected int count;

 // Commands
 public void reset () {
 count = 0;
 }

 public void increment () {
 count++;
 }

 // Queries
 public int countValue () {
 return count;
 }
}

Page 159

Since there is no explicit constructor in class Counter the default constructor sets the field count to its default initial
value of zero. The only operations that may be performed on an instance of class Counter are reset, increment, and
countValue . The first two of these are commands that modify the internal state of the Counter object and the third is a
query that returns the internal count .

Suppose we wish to extend the Counter ADT by allowing the user to impose a constraint that limits the count value to a
specified maximum. Listing 9.2 presents class ConstrainedCounter, which extends class Counter .

Listing 9.2 Class ConstrainedCounter

/** Implements ADT of a Counter with an upper limit on its count value
*/
public class ConstrainedCounter extends Counter {

 // Fields
 protected int upperLimit;

 // Constructor
 public ConstrainedCounter (int upperLimit) {
 this.upperLimit = upperLimit;
 }

 // Commands
 public void increment () {
 if (count < upperLimit)
 count++;
 }
}

An explicit constructor is provided in class ConstrainedCounter , which sets the value of the new internal field
upperLimit. A simple application that exercises the two classes Counter and ConstrainedCounter is presented. Its
interface is shown in Figure 9.1.

Figure 9.1.
Example application using Counter and ConstrainedCounter.

Page 160

9.2—
General Properties of the Fraction ADT

A fraction can represent the number 2/3 precisely. It means that we have exactly two parts out of exactly three. Most
computer languages are forced to use a floating-point representation for numbers like 2/3. Many fractions do not have an
exact floating-point representation. The best we can do for 2/3 is:

2/3 = 0.6666666666666 . . . // depending on the precision

Based on these comments, we now provide a precise definition for a rational number (fraction).

Definition of Rational Number

A rational number, r, is one that can be represented by a ratio of integers:

r = numerator / denominator

where:
 -
 numerator and denominator are positive or negative integers
 - denominator cannot be zero

9.3—
Requirements for Class Fraction

We wish to design a class Fraction that correctly represents the properties and definition for rational numbers.
Additionally, we wish to provide commands and queries that make instances of class Fraction useful. Since this
example is not intended as a commercial product we will not add methods for every possible use of fractions. Our
Fraction class will override some of the methods inherited from its parent class(es) as desired. Table 9.1 gives a general
specification of the properties we desire for class Fraction . Since the JDK (Java development kit) has an abstract class,
java.lang.Number, with the wrapper classes for the primitive number types as extensions, it seems logical to let Fraction
also extend Number . A Fraction is a kind of Number . For consistency, our general specification shows the inclusion and
redefinition of methods inherited from Number and from Object. Class Fraction is a final class. The access modifier,
final, designates a Java class as one that cannot be extended. This choice makes sense for Fraction because there are no
extensions to the concept of a rational number. Other subclasses of Number in the Java platform are also specified as
final.

Figure 9.2 shows a UML design diagram for our Fraction class. It directly extends java.lang.Number . Selected
commands and queries inherited from Number and Object are shown for each class. The three methods shown in class
Object should be overridden to satisfy specific requirements for an instance of class Fraction . All four methods shown
in abstract class Number are abstract and must be overridden by Fraction . Our class implements interface Comparable
(a promise to implement query compareTo).

Page 161

Table 9.1 General Specifications for the Fraction Class

Property or Feature Comments

Representation numerator/denominator

- numerator - an integer

- denominator - an integer

Create/Initialize Options

- default numerator = 0, denominator = 1

- specify numerator one-parameter set to numerator

- specify numerator and
denominator

two parameters specify numerator and denominator

- from a String String has form numerator / denominator

Store simplest form Convert 10/15 to 2/3, etc.

Arithmetic operations Add, subtract, multiply, divide

Conversion to String Redefine inherited java.lang.Object method toString()

Equality test Redefine inherited java.lang.Object method equals()

Comparison Implement java.lang.Comparable interface

Field commands Set values of numerator and denominator

Field queries Get values of numerator and denominator

Equivalent forms Ensure that 2/3 and -2/-3 are same; -2/3 and 2/-3 are same

Conversion to Numbers Redefine methods inherited from abstract class
java.lang.Number

Hashing Redefine inherited java.lang.Object method hashCode()

The next step in our design is to add methods (constructors/commands/queries) to class Fraction . Table 9.1 gives a
general specification of the operations required and/or desired.

When we couple this general specification with details in the Java platform the signatures shown in Listing 9.3 are
obtained for our Fraction class. The Comparable interface is discussed in more detail in Chapter 10.

Listing 9.3 Precise Specification for Class Fraction

/** Class Fraction specification
* An instance of Fraction is a rational number.
*/

public final class Fraction extends Number
 implements Comparable {

Page 162

 // Fields
 private long numerator;
 private long denominator;

 // Constructors
 public Fraction () {}
 public Fraction (long num, long denom) {}
 public Fraction (long num) {}
 public Fraction (String fString) {}

 // Commands
 public void setNumerator (long num) {}
 public void setDenominator (long denom) {}

 // Queries - fields
 public long numerator () {}
 public long denominator () {}

 // Queries - arithmetic operations
 public Fraction add (Fraction f) {}
 public Fraction subtract (Fraction f) {}
 public Fraction multiply (Fraction f) {}
 public Fraction divide (Fraction f) {}

 // Queries - comparisons
 public boolean equals (Object obj) {}
 public int compareTo (Object obj) {}

Figure 9.2.
Design diagram for class Fraction.

Page 163

 // Queries - conversions
 public int intValue () {}
 public long longValue () {}
 public float floatValue () {}
 public double doubleValue () {}
 public String toString () {}
 public int hashCode () {}
}

Explanation of Listing 9.3

The class header specifies Fraction as a final class, which means it cannot be extended. Fraction extends abstract class
Number and implements the Comparable interface. The fields numerator and denominator are of type long (for a wider
range of values) and have private accessibility. Since Fraction cannot be extended and since it provides commands and
queries for field modification/access, the use of private is justified.

All the constructors, commands, and queries shown in Listing 9.3 have public visibility. They define the public interface
for instances of class Fraction.

Four constructors allow creation/initialization options as described in the general specification. Commands and queries
for the fields are next. Methods add, subtract, multiply , and divide are the arithmetic operations. Method compareTo is
defined as an abstract method in interface Comparable and must be implemented in Fraction since it implements
Comparable . Methods equals, hashCode , and toString are inherited from java.lang.Object and overridden. Abstract
conversion methods intValue, longValue, floatValue , and doubleValue in abstract class java.lang.Number are to be
implemented.

We wish to override the default implementation for equals to create our desired result. The default returns true if and
only if the fractions being compared are the same objects. We want equals to return true if the numerators and
denominators of two fractions represent the same numerical valued fraction. We also override toString to create a string
of the form ''<sign>numerator/denominator." We include logic so that: (1) a fraction with numerator = 2 and
denominator = -3 will display as "-2/3"; (2) a fraction with numerator = -2 and denominator = -3 (or numerator 2 and
denominator 3) will display as "2/3." Method hashCode from Object returns a unique int value for any object. We
redefine hashCode to depend on the numerator and denominator field values. The concept and algorithms for hashing
are presented in Chapter 16. Conversion methods intValue and longValue clearly will provide truncated and imprecise
values for all fractions except those reducible to whole numbers. Methods floatValue and doubleValue provide precision
based on their internal accuracy.

9.4—
Implementation Details for Selected Methods in Class Fraction

One of the more interesting constructors for creation and initialization of an instance of Fraction is the one that takes a
String instance as input. Listing 9.4

Page 164

shows an implementation for two methods in class Fraction that enable initialization of an instance from a string.

Listing 9.4 Creation of an Instance of Fraction from a String

// Create an instance of Fraction from a String
// The fString must have form ''numerator / denominator" .
public Fraction (String fString) {
 try {
 stringToFraction(fString);
 } catch (NumberFormatException ex) {
 throw new NumberFormatException("Error in fraction string");
 }
}
 . . .

// Internal method - extracts numerator and denominator from fString
private void stringToFraction (String fString) {
 int index = fString.indexOf("/");
 if (index == -1){ // numerator only specified
 try {
 numerator = (Long.valueOf(fString)).longValue();
 denominator = 1;
 } catch (NumberFormatException ex) {
 throw new NumberFormatException(
 "Error in fraction string");
 }
 }
 else { // numerator & denominator specified
 if (index == fString.lastIndexOf("/")) {
 try {
 setNumerator((Long.valueOf(fString.substring(
 0, index).trim())).longValue());
 setDenominator((Long.valueOf(fString.
 substring(index + 1, fString.length()).trim())).
 longValue());
 } catch (NumberFormatException ex) {
 throw new NumberFormatException(
 "Error in fraction string");
 }
 }
 else // multiple "/" symbols
 throw new NumberFormatException(
 "Error in fraction string");
 }
}

Clearly, we expect the string to be of the correct form, that is, -2/3; however, we must protect against incorrectly
formatted input strings. The preferred

Page 165

way to handle exceptional conditions (such as an incorrect input parameter) is to throw an exception. We (the developers
of the Fraction class) may also choose to handle such an exception or we may let it pass to the user of the offending
method (the constructor in this case). In our implementation of Fraction we choose to modify the message generated by
the exception and then throw it to the user.

Explanation of Listing 9.4

The constructor passes the work of initializing a fraction from input parameter, fString, to a private method,
stringToFraction. This method is strictly for internal use by class Fraction and is justified in having private visibility.
The conversion process in stringToFraction consists of parsing a string of the form numerator/denominator to:

1. extract the digits prior to the ''/" representing numerator,

2. verify that there is no more than one "/" character in the string,

3. extract the remaining characters following the "/" representing denominator .

If no "/" character is in the string, it is to be treated as an integer and represented as numerator = extracted value and
denominator = 1. There are three ways an exception may occur in the conversion process. An exception occurs if there is
more than one "/" character in the string or if the strings representing numerator and denominator cannot be converted to
valid numbers of type long. Static method Long.valueOf(aString), which produces a Long from a String , may be invoked
in three places. If aString is not a valid number string, the valueOf method throws a NumberFormatException. You
would have to look at the documentation for class Long or its source code to know this. In addition, the last else clause
specifically throws a NumberFormatException if the fString contains more than one "/" character (based on the result of
the boolean expression (index = = fString.lastIndexOf(" / ")). Commands setNumerator and setDenominator must call
method simplify , whose purpose is to reduce numerator and denominator to their simplest form (smallest integer values).

Notice that method stringToFraction throws all generated exceptions, passing responsibility for throwing or handling to
the calling method – the constructor. To make the Fraction class friendlier to a user, we choose to rethrow the exception
to provide a more specific message in the constructor with a try catch clause as shown in Listing 9.4.

Details for method simplify are given in Listing 9.5. Since the Fraction class takes full responsibility for ensuring that a
fraction is always in simplest form, method simplify has private visibility. The algorithm implemented in Listing 9.5
finds the greatest common denominator (gcd) for numerator and denominator, and then divides each by that value. It
initializes gcd to be the smaller of numerator or denominator, before decrementing gcd until division of both numerator
and denominator by gcd leaves no remainder or until gcd equals one. For example, (f = 12/9) – gcd is initialized to 9,
decremented in the while loop until gcd = 3 (largest value for which the second term in the &&-clause is true), and then
used to set numerator = 4 and denominator = 3.TE

AM
FL
Y

Team-Fly®

Page 166

Listing 9.5 Details of Private Method Simplify()

private Fraction simplify () {
 long gcd = 0L;
 // set gcd to smaller of numerator or denominator
 if (Math.abs(numerator) > Math.abs(denominator))
 gcd = Math.abs(denominator);
 else
 gcd = Math.abs(numerator);
 if (gcd == 0)
 return this;
 while ((gcd != 1) && ((numerator % gcd != 0)
 || (denominator % gcd != 0)))
 gcd--;
 numerator /= gcd;
 denominator /= gcd;
 return this;
}

9.5—
Building a Fraction Laboratory to Test Class Fraction

In this section we introduce a concept that will be used to test correct behavior by implementations of abstract data type
classes. More specifically, we develop an application called FractionLab that provides a graphical interface for testing
each method (constructors, commands, and queries) in the public interface of class Fraction . The design for the
application and how it connects to our Fraction class are indicated in the class diagram shown in Figure 9.3. The
application uses two instances of class Fraction , as indicated by labels fraction1 (f1 in Figure 9.4) and fraction2 (f2 in
Figure 9.4) in the diagram.

FractionLab is the main application class, FractionLabUI is the user interface class, and FractionLabUI has two
instances of class Fraction . An initial screen shot of the fraction laboratory is shown in Figure 9.4. Instances fraction1
and fraction2 are initialized to 1/1.

Figure 9.3.
Class diagram for the fraction laboratory application.

Page 167

Figure 9.4.
Initial screen shot of fraction laboratory application.

The user may enter new values for fraction1 and fraction2 by editing the numerator, denominator, or string
representations for each followed by a carriage return (''Enter" key). Every action fires an event that is echoed with an
appropriate message in the "Result of Action" list. Buttons in the left column enable messages to be sent to fraction1 (f1)
only. Buttons in the right column enable messages to be sent to fraction1 (f1) with fraction2 (f2) as a parameter.

Figure 9.5 shows the fraction laboratory after a number of operations on fraction1 and fraction2. The example values
chosen in Figure 9.5 illustrate a number of important issues about the correct functioning of a well-designed Fraction
class as well as some of the limitations of various methods that may be applied to in stances of Fraction. The following
features are of particular interest.

1. The string representation promotes the minus sign to the numerator (although it is really attached to the denominator
for fraction2).

2. The fractions are equal (again the sign location is compensated).

3. The intValue of fraction1 shows truncation.

4. The floatValue of fraction1 shows round-off error.

5. The values for fraction2 were actually entered as 4/-6 (automatically simplified).

6. New value 2/0 entered for fraction1 is rejected with error message.

Page 168

Figure 9.5.
Illustration of some operations provided by fraction laboratory.

9.6—
Documentation for Fraction – Generated by javadoc

The JDK comes with a tool called javadoc that automatically generates documentation for Java classes. It creates the
documentation in HTML format and will read special tags and comments in the source code. This requires considerable
extra effort on the part of the developer of a class; however, it provides a uniform way to document Java classes. A fairly
complete set of documentation (javadoc) comments was added to the Fraction source file to illustrate this feature of
Java. For details you are referred to the files in the docs folder of the notes for this chapter.

9.7—
Summary

• In object-oriented languages, the class provides an excellent logical unit for encapsulating an abstract data type (ADT)
and its operations.

• ADTs provide a convenient conceptual framework for data structures that are presented in following chapters.

• In this chapter we illustrate two simple abstract data types: Counter (including a specialization called
ConstrainedCounter) and Fraction .

Page 169

• GUI-based laboratory applications are introduced as a means of testing the behavior of an ADT. Laboratories are
present for both the Counter and Fraction ADTs.

9.8—
Exercises

1 The Counter ADT described earlier in this chapter has a very precise but limited specification. Define a new counter
that may be decremented by adding a new command, decrement , to the specification for Counter . Using the source files
provided in the counter folder of the Chapter 9 notes, modify Counter.java to provide a command to decrement. Modify
the CounterUI.java file to add buttons for decrementing both the Counter and ConstrainedCounter instances tested by
the counter laboratory.

2 The FractionLab application may be compiled and executed as is. It imports and uses a fully operational
implementation of Fraction that is part of the foundations package. It may be compiled and launched using the batch
file, Goui.bat. In the support folder in the FractionLab folder of the Chapter 9 notes is a file named Fraction.java. This
file provides a skeletal implementation of Fraction . It compiles as is and may be used with the FractionLab ; however, it
does nothing useful. This exercise is a project to complete and test the implementation of this skeletal version of
Fraction . The following steps are to be followed precisely:

a. Create a working directory for your project and copy into it the files FractionLab.java, FractionLabUI.java, and
Goui.bat from the FractionLab folder. Also copy the skeletal implementation file, Fraction.java, from folder
support into the same directory.

b. The local copy of Fraction.java now preempts the imported class foundations.Fraction, allowing the laboratory
to be used for testing the new implementation.

c. Complete the details of all commands and queries in Fraction.java and verify correctness using the FractionLab .

Page 170

10—
Containers As Abstract Data Types

A box of paper clips, a stack of trays in a cafeteria, and a room full of desks, chairs, lamps, and other furniture are
containers. An array of records , a queue of customers at a movie theatre, a bag of groceries, a set of lottery tickets, a
dictionary of words and their definitions, and a database of patient records are additional examples of containers. Some
of the containers cited above – such as the box of paper clips, set of lottery tickets, and dictionary of words and their
definitions – consist of identical types of objects, whereas the other containers consist of a mixture of object types. Each
type of container has its own rules for ordering and accessing its entities.

It is important to make a distinction between the container object and the things that it contains. For example, we can
distinguish the box that holds paper clips from the paper clips themselves. The box has an identity and existence even if
it is empty. It is common to take home empty paper bags from a supermarket that may later be used as garbage bags.

This chapter, as its name implies, focuses on containers. It sets the stage for almost everything that will be done in later
chapters. The study of data structures is the study of containers. In this chapter we delineate the behavior of many
different container abstract data types. We establish a blueprint that shall form the basis for the concrete data structures
that implement the container abstractions defined in this chapter.

Our goals for this chapter are the following:

• Use a combined top-down, bottom-up approach to designing a hierarchy of Container classes representing the major
classical data structures. A single, final UML diagram is presented of the classes defined in this chapter.

• Use good object -oriented principles in the design.

• Present high-level user interfaces to the Container classes using the Java interface, a special kind of class that presents
the abstract behavior for a kind of object.

• Present clear reasons for the chosen hierarchical relationships among the various Container classes.

• Develop a set of logically consistent commands and queries that define the behavior represented by each particular
Container class.

Page 171

• Follow good Java design principles when making decisions about exception handling, support for serializability, and
redefinition of inherited methods. Consistent with good Java design principles, the Container interfaces, plus most
supporting or implementing classes, will be in a new package called foundations .

Among the definitions for container is ''anything that contains or can contain something." This leads us to look up the
meaning of contain, which has a number of definitions. The definition of contain that fits our intention for software
containers is "to hold or include within itself as constituent parts." In this chapter, we seek to develop a hierarchy of
classes representing containers. The hierarchy is designed to include a wide variety of known classical containers used in
computer problem solving and provide a framework for possible extensions. Our containers contain only reference types
(objects). Containers of primitive types may also be constructed.

We separate the concepts and properties of a container from the details for implementing those concepts and properties.
In fact, there are often a number of implementation choices for bringing to life the concepts and properties of any
specific container. As a result of this separation of concept and properties from implementation details, we use the Java
interface (a special kind of class) for building the container hierarchy. We focus on what you can do with a container and
its objects and its behavior, not on the details of how those objects may be stored in the container.

We may distinguish different kinds of containers by considering the following properties:

1. Objects in the container may be ordered or unordered.

• Order may depend on an inherent property of the container.

• Order may depend on a property of the contained objects.

2. Duplicate objects may be allowed or disallowed.

3. Objects in the container may be restricted to a particular type.

4. Objects in the container may be accessible by an index.

5. Objects in the container may be accessible based on relative position.

6. Objects in the container may be accessible based on their value.

7. Containers may be distinguished by their connectivity (linear, nonlinear, etc.).

Consistent with the principle that the root of an inheritance tree represents the most general kind of object, we will
develop a hierarchy of subinterfaces under a root interface called Container . Interface Container represents the most
general of all containers.

10.1—
The Container Hierarchy – Top Level

In developing a hierarchy of containers we begin at the top and define properties that are common to all containers. In
developing new Java classes we should also consider if serializability is desired. A serializable object is one that can
easily

Page 172

be written to or read from a file stream as an object (preserving all details of its fields). Support for serializability was
added to the 1.1 release of Java. Since the need for serializability is dependent on the application, we make serializability
available to all implementing classes for containers by letting Container extend interface Serializable . Since interface
Serializable defines no methods it is simply a flag that enables serialization by the appropriate Stream classes. It is thus
available if the application chooses to use it. Consideration of exceptions to be thrown is added to the interfaces as
comments and deferred to the implementing classes.

The most general kind of container has the following
properties:

1. does not care what kind of objects it contains

2. has no requirements about the order of the objects it contains

3. accepts duplicate objects

4. supports serializability

5. accepts commands to:

• make itself empty

6. accepts queries that:

• return the number of contained objects

• answer true if the container is empty.

To represent this most general kind of container, we define the Java interface Container as shown in Listing
10.1.

Listing 10.1 Interface Container

/** Interface Container - top level container
*/
package foundations;
import java.io.Serializable;

public interface Container extends Serializable {

 // Commands - see subinterfaces

 /** Remove all objects from the container if found
 */
 public void makeEmpty ();

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty ();

Page 173

 /** Return the number of objects in the container
 */
 public int size ();
}

10.2—
The Simplest Containers – Stack and Queue

Our approach to defining the container classes is a mixture of top-down and bottom-up logic. We began by defining the
top-level interface Container . Next we consider the simplest of all containers, Stack and Queue .

A stack is a container with the following properties:

1. A stack has order that is a property of the stack itself, independent of the objects it contains. Order of the objects in a
stack depends on the sequence in which they are inserted or removed. The ordering relationship is characterized as first
in, last out or last in, first out.

2. Access to the stack is restricted to one location called the top. We may push (add) a new object onto the top, pop
(remove) the object on the top, or query the top object without removing it.

3. We may command the stack to makeEmpty and we may query the stack to tell us if it isEmpty or return its size.

The Stack interface is an extension of Container so it inherits all methods in Container and adds only the new
commands push and pop plus the query top as shown in Listing 10.2.

Listing 10.2 Interface Stack

/** Interface Stack - a first-in last-out container
*/
package foundations;

public interface Stack extends Container {

 // Commands

 /** Add an object onto the top of the stack
 */
 public void push (Object obj);

 /** Remove an object from the top of the stack
 * Throw NoSuchElementException if stack is empty
 */
 public void pop ();

Page 174

 // Queries

 /** Return without removing, the top object on the stack
 * Throw NoSuchElementException if stack is empty
 */
 public Object top ();
}

A queue is a container with the following properties:

1. A queue has order that is a property of the queue itself, independent of the objects it contains. Order of the objects in a
queue depends on the sequence in which they are inserted or removed. The ordering relationship is characterized as first
in, first out or last in, last out.

2. Access to the queue is restricted to two locations called the front and rear. We may add a new object at the rear,
remove the object at the front, or query the front object without removing it.

3. We may command the queue to makeEmpty and we may query the queue to tell us if it isEmpty or return its
size.

The Queue interface is an extension of Container so it inherits all methods in Container and adds only the new
commands add and remove plus the query front as shown in Listing 10.3.

Listing 10.3 Interface Queue

/** Interface Queue
*/
public interface Queue extends Container {

 // Commands

 /** Add an object at the rear of the queue
 */
 public void add (Object obj);

 /** Remove an object from the front of the queue
 * Throws NoSuchElementException if queue is empty
 */
 public void remove ();

 // Queries

Page 175

 /** Return without removing, the front object in the queue
 * Throws NoSuchElementException if queue is empty
 */
 public Object front ();
}

10.3—
Supporting Interface and Classes

Before continuing our presentation of the hierarchy of container abstractions (interfaces), we discuss two important
supporting abstractions: Comparable and Association. These abstractions are used to support some of the containers that
are defined in the following sections.

Ordered containers contain elements whose position within the container is based on the magnitude of some feature of
the contained objects. More precisely, the objects in an ordered container must be comparable. Requiring the class of the
object to implement interface Comparable enforces this property. The details of interface Comparable are shown in
Listing 10.4, abstracted from the Java source file for Comparable in package java.lang. Comparable contains a single
query, compareTo.

The compareTo query returns an int whose value depends on the relative magnitudes of the object receiving the message
(receiver) and the parameter object (obj). It returns -1 if the receiver is less than obj, 0 if the receiver is equal to obj, and
1 if the receiver is greater than obj.

Listing 10.4 Interface Comparable

/** Interface Comparable
*/
public interface Comparable {

 // Queries

 /** Return -1 if the receiver is less than obj,
 * 0 if the receiver equals obj and
 * 1 if the receiver is greater than obj
 */
 public int compareTo (Object obj);
}

Class Association allows us to group a key with a value. There is an association between a key and its value. Class
Association plays an important support role in our study of data structures where we need a container of associated key-
value pairs.

Dictionaries contain instances of Association. Keys organize the dictionary; that is, we typically search for an object in
the dictionary by looking up its key.

TE
AM
FL
Y

Team-Fly®

Page 176

Lookup requires a test for equality. If the dictionary is ordered (based on the relative magnitude of contained keys), then
we must ensure that the keys in any associations entered into the OrderedDictionary also be Comparable . We also
choose to require that associations be serializable to be consistent with our choice that all containers be serializable.
Listing 10.5 gives the details for class Association. It is a regular class, not an interface.

Listing 10.5 Class Association

/** Class Association
* An instance must initialize a key on creation.
* If used as a comparable Association, keys must be comparable and
* comparison is based on keys only.
* Note that equals() does not enforce the comparable feature and
* requires equality of both key and value.
*/
package foundations;
import java.io.Serializable;

public class Association extends Object
 implements Comparable, Serializable {

 // Fields

 private Object key;
 private Object value;

 // Constructors

 /** Create an instance with specified key and null value
 */
 public Association (Object key) {
 this(key, null);
 }

 /** Create an instance with specified key and value
 */
 public Association (Object key, Object value) {
 this.key = key;
 this.value = value;
 }

 // Commands

 /** Set the value
 */
 public void setValue (Object value) {
 this.value = value;
 }

Page 177

 // Queries

 /** return key
 */
 public Object key () {
 return key;
 }

 /** Return value
 */
 public Object value () {
 return value;
 }

 /** Return a String representation.
 * Return a String of the form <key:value>
 */
 public String toString () {
 return '' < " + key + ":" + value + " > " ;
 }

 /** Override inherited Object method equals()
 */
 public boolean equals (Object obj) {
 if (obj instanceof Association)
 return (key.equals(((Association)obj).key)
 && value.equals(((Association)obj).value));
 else
 return false;
 }

 /** Implement Comparable method compareTo
 * Compare based only on key; key must be Comparable
 */
 public int compareTo (Object obj) {
 return ((Comparable)key).compareTo(((Association)obj).key());
 }

 /** Override inherited Object method hashCode().
 * Return a unique int representing this object
 */
 public int hashCode () {
 int bits1 = key.hashCode();
 int bits2 = value.hashCode();
 return (bits1 << 8)^(bits2 >> 8);
 }
}

Page 178

10.4—
The Container Hierarchy

We next consider logic for partitioning our Container hierarchy to represent more specific kinds of containers. There are
numerous potential criteria for creating a hierarchy of container abstractions. These criteria include ordered versus
unordered, order based on container rules (e.g., position, index) versus contained object properties (e.g., relative
magnitude), duplicates allowed or disallowed, or contained objects restricted to specific types (e.g., Comparable,
Association instead of Object). In some cases the specific methods for a container are dependent on the internal structure
of the container – for example, trees.

As with any good inheritance hierarchy, we are guided and constrained by the principle that methods defined in ancestor
classes must make sense in all descendent classes.

We define additional interfaces that directly extend Container . They are List, BinaryTree, SearchTable, Dictionary,
Heap, and Set. The distinguishing characteristics of each are given below. Figure 10.1 shows a class diagram for
Container and its direct descendant interfaces.

Figure 10.1.
Top-level interface Container and its direct descendants.

Page 179

List – A list has a linear structure. As a minimum requirement, we may access both ends of a list. Its contained objects
have no particular order except as a result of the history of adding and removing objects at either end. The ends of the
list may be characterized as front and rear. The list has some shared features with a queue; however, it has more.
Variations on a list may be represented as extensions. These variations include indexable (allowing access at an index)
and positionable (allowing access before or after a contained object). An ordered list (based on some property of the
contained objects) is a special list that has fewer methods than List. It is implemented as a container whose methods
enforce order (i.e., contained objects must be Comparable).

BinaryTree – A binary tree is a nonlinear structure consisting of binary nodes. Each node may have at most two
offspring nodes (left and right). A tree is generally accessed at one location, a special node known as its root. A tree has
commands and queries unique to its structure. There are several options for iteration over the objects in a tree. The
objects in a tree may be ordered (represented by an implementation based on order of its contained objects) or not. An
ordered binary tree (called a BinarySearchTree) is implemented as a SearchTable that enforces order based on
properties of its contained elements (its elements must be Comparable).

SearchTable – The elements of this container must implement Comparable . An OrderedDictionary contains
associations and is a kind of SearchTable . A special queue called PriorityQueue is also a kind of SearchTable . Classes
BinarySearchTree and OrderedList implement SearchTable.

Dictionary – A dictionary contains key-value pairs (instances of Association). Commands and queries for a dictionary
are centered on the keys. The keys must implement the equals query inherited from Object . A dictionary may also be
ordered (on the keys). Interface OrderedDictionary requires that its keys be comparable. Thus OrderedDictionary
extends interface SearchTable (instead of Dictionary), which enforces the comparable property. This design choice was
not easily made. An OrderedDictionary is a kind of Dictionary (implying that it should extend interface Dictionary).
However, Java provides no mechanism for enforcing a type constraint (e.g., forcing an Object to be Comparable) for
parameters in redefined methods in a subclass. We choose the design that allows us to enforce comparability of keys for
the elements of an ordered dictionary.

Set – A set is an unordered container with the constraint that no duplicate copies of contained objects are allowed. This
is the only container, considered so far, that strictly disallows duplicates. A set includes methods applicable to
mathematical sets.

Heap – A heap is a special binary tree (called a complete binary tree) whose contained objects obey the heap-ordering
property. The heap-ordering property states that the object contained in a node in the tree is smaller than the contents of
any node in its left and right subtrees. No other ordering relationship is implied or required.

In the following sections we present additional logic for various interfaces extended from Container . Please note that
methods inherited from Container or

Page 180

other ancestor classes are not repeated in the listings. This allows us to focus on what is new in the subinterfaces and is
consistent with inheritance rules of object orientation and of Java.

10.4.1—
The List Interface and Its Descendants

Interface List extends Container . It is a linear structure with access to its front and rear. It adds several new commands
and queries. The details of interface List are given in Listing 10.6.

Listing 10.6 Interface List

/** Interface List
*/
package foundations;
import java.util.*;

public interface List extends Container {

 // Commands

 /** Add obj at the front of the list.
 */
 public void addFront (Object obj);

 /** Add obj at the rear of the list
 */
 public void addRear (Object obj);

 /** Remove object from the front of the list if found.
 */
 public void removeFront ();

 /** Remove object from the rear of the list if found.
 */
 public void removeRear ();

 // Queries

 /** Return without removing the front object in the list
 * Throw NoSuchElementException if list is empty
 */
 public Object front ();

 /** Return without removing the rear object in the list
 * Throw NoSuchElementException if list is empty
 */
 public Object rear ();

Page 181

 /** return true if the list contains obj
 */
 public boolean contains (Object obj);

 /** return an iterator on the elements in the list
 */
 public Iterator elements ();
 }

Notice that method elements in Listing 10.6 has a return type of Iterator. Iterators provide sequential access to the user
of each element in a container using the messages shown in interface Iterator in Listing 10.7. The user may send
appropriate messages to each contained object during the iteration. Iterators will be used in several of our container
classes. They allow the user to access each element in the container. Listing 10.7 is abstracted from Iterator.java in the
Java package java.util.

Listing 10.7 Interface Iterator

/** Interface Iterator
*/

public interface Iterator {

 // Commands

 /** Remove the last element returned by next()
 * Use only once after a call to next()
 */
 public void remove ();

 // Queries

 /** Return true if the container has an unvisited element
 */
 public boolean hasNext ();

 /** Return next element in the container
 * Use only after hasNext() returns true
 * Throws NoSuchElementException if no more elements
 */
 public Object next ();
}

Interface List has a number of potential subinterfaces representing specific kinds of lists. Included are IndexableList and
PositionableList. Figure 10.2 shows the hierarchy of interfaces for lists.

Page 182

Figure 10.2.
The List interface hierarchy.

Listing 10.8 gives details for interface IndexableList . An indexable list is a list whose elements may be accessed via an
index. The index is of type int. This interface adds commands for adding and removing an object at a specified index
and a query for accessing an object at a specified index without removing it.

Listing 10.8 Interface IndexableList

/** Interface IndexableList
*/
package foundations;

public interface IndexableList extends List {

 // Commands

 /** Replace object at index with obj
 * Throws ArrayIndexOutOfBoundsException if index error
 */
 public void insertAt (Object obj, int index);

Page 183

 /** Remove an object at specified index
 * Throws ArrayIndexOutOfBoundsException if index error
 */
 public void removeAt (int index);

 // Queries

 /** Return the object at index without removing
 * Throws ArrayIndexOutOfBoundsException if index error
 */
 public Object elementAt (int index);
}

Listing 10.9 gives details for interface PositionableList . A positionable list is a list whose elements may be accessed
relative to an object in the list, such as before or after. It adds commands for adding and removing an object before or
after a specified object. The interface adds queries for accessing, without removing, an object before or after a specified
object in the list.

Listing 10.9 Interface PositionableList

/** Interface PositionableList
* Objects in PositionableList must override equals() from Object
*/
package foundations;

public interface PositionableList extends List {

 // Commands

 /** Insert obj after target object in the list
 * Throw NoSuchElementException if target not in the list.
 */
 public void addAfter (Object obj, Object target);

 /** Insert obj before target object in the list
 * Throw NoSuchElementException if target not in the list.
 */
 public void addBefore (Object obj, Object target);

 /** Delete object after target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is last in the list.
 */
 public void removeAfter (Object target);

Page 184

 /** Delete object before target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is first in the list.
 */
 public void removeBefore (Object target);

 // Queries

 /** Return object after target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is last in the list.
 */
 public Object elementAfter (Object target);

 /** Return object before target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is first in the list.
 */
 public Object elementBefore (Object target);
}

10.4.2—
The BinaryTree Interface

Listing 10.10 gives details for interface BinaryTree . A binary tree generally does not require that its contained objects be
ordered. Objects in the binary tree must respond to the equals method inherited from Object . Interface BinaryTree adds
no new commands because the actual commands needed depend on the kind of binary tree. Almost all binary trees have
need for the five queries added by interface BinaryTree. These new queries allow the user to know the maximum level
or average path length of the tree and to return three varieties of iterators. The iterators allow the user to traverse (visit
every node of) the binary tree using preorder, in-order, or postorder traversal algorithms.

Listing 10.10 Interface Binary Tree

/** Interface Binary Tree
* Contained objects must override equals() from Object
/
package foundations;
import java.util.*;

public interface Binary Tree extends Container {
 // Commands

 // Queries

Page 185

 /** Return an in-order iterator on elements in the tree
 */
 public Iterator traverseInorder ();

 /** return a preorder iterator on elements in the tree
 */
 public Iterator traversePreorder ();

 /** Return a postorder iterator on elements in the tree
 */
 public Iterator traversePostorder ();

 /** return the maximum level in the tree, root is at level 1
 */
 public int maxLevel ();

 /** Return average path length for the tree
 */
 public double avgPathLength ();
}

10.4.3—
The SearchTable Interface and Its Descendants

A SearchTable extends Container and holds elements that are of type Comparable . Duplicates are allowed. SearchTable
has two subinterfaces: OrderedDictionary and PriorityQueue. Figure 10.3 shows the SearchTable hierarchy of
interfaces.

In addition to the commands and queries inherited from Container , a SearchTable adds commands to add and remove a
comparable object. It also adds queries

Figure 10.3.
SearchTable interface hierarchy.

TE
AM
FL
Y

Team-Fly®

Page 186

that allow the user to get a contained object, check to see if the search table contains an object, or return an iterator on all
elements in the search table. Details for interface SearchTable are given in Listing 10.11.

Listing 10.11 Interface SearchTable

/** Interface SearchTable
* The elements in this container must be of type Comparable.
* Duplicates are allowed for contained objects.
*/
package foundations;
import java.util.*;

public interface SearchTable extends Container {

 // Commands

 /** Add obj to the table; must be Comparable
 */
 public void add (Comparable obj);

 /** Remove obj from table, if found
 */
 public void remove (Comparable obj);

 // Queries

 /** Return true if the table contains obj
 */
 public boolean contains (Comparable obj);

 /** Return obj if in table, else return null
 * useful when obj is a key & returns an Association
 */
 public Comparable get (Comparable obj);

 /** Return an iterator on all elements
 */
 public Iterator elements ();
}

An OrderedDictionary is a special kind of SearchTable that restricts its contained elements to be instances of
Association. The order of elements in an ordered dictionary is based on the key of each association. One might also
argue that an OrderedDictionary is a kind of Dictionary . Since Java does not support generic typing, we choose to let
OrderedDictionary extend SearchTable instead of Dictionary to enforce the constraint that an ordered dictionary may
contain only

Page 187

Comparable objects. Recall that a Dictionary can contain any Object. Details for OrderedDictionary are given in Listing
10.12.

OrderedDictionary adds two new commands (addKey, changeValue) and four new queries (containsValue, valueFor,
keys, values) to support dictionary operations while making use of inherited methods from SearchTable and Container .
As a result, the user may iterate over the keys, values, and elements (contained associations) of an OrderedDictionary.

Listing 10.12 Interface OrderedDictionary

/** Interface OrderedDictionary
* A dictionary contains instances of Association: key-value pairs
* A class for a key must implement equals() from class Object
* AND interface Comparable for an ordered dictionary
*/
package foundations;
import java.util.*;

public interface OrderedDictionary extends SearchTable {

 // Commands

 /** Add an association <key-value>
 */
 public void addKey (Comparable key, Object value);

 /** Changes value for specified key
 * Throw NoSuchElementException if key not found.
 */
 public void changeValue (Comparable key, Object value);

 // Queries

 /** Return true if key is in dictionary
 */
 public boolean containsValue (Object value);

 /** Return value for specified key
 * Throw NoSuchElementException if key not found
 */
 public Object valueFor (Comparable key);

 /** Return an iterator on the keys
 */
 public Iterator keys ();

 /** Return an iterator on the values
 */
 public Iterator values ();
}

Page 188

A PriorityQueue is a kind of SearchTable with the property that the order of contained elements is based on a priority .
From its name, we might also assume that a priority queue is also a kind of Queue . While this may be true, its behavior
is more closely aligned with the behavior of a SearchTable. Like the OrderedDictionary, a PriorityQueue must contain
only Comparable objects. We choose to let PriorityQueue extend SearchTable . Details of interface PriorityQueue are
given in Listing 10.13. It provides a new command to add an element to the priority queue plus two new queries. Query
highest returns the contained element with the highest priority. The remove command inherited from SearchTable is
interpreted to always remove the element with the highest priority. Query priorities returns an iterator over the priorities
of contained elements, from highest to lowest.

Listing 10.13 Interface PriorityQueue

/** Interface PriorityQueue
* Contained objects must implement Comparable
*/
package foundations;
import java.util.*;

public interface PriorityQueue extends SearchTable {

 // Commands

 /** Add an Association as key-value pair; priority is key
 */
 public void add (Comparable key, Object value);

 // Queries

 /** Return the object with highest priority
 * Throw NoSuchElementException if priority queue is empty
 */
 public Comparable highest ();

 /** Return an iterator on the priorities
 */
 public Iterator priorities ();
}

10.4.4—
The Dictionary Interface

A Dictionary contains associations and provides behavior that allows user interaction primarily through the keys.
Although we think of a dictionary as a large book of words and definitions that happen to be in alphabetical order, there
is no constraint that a dictionary is ordered. We typically require only the ability

Page 189

to add, remove, or look up elements based on knowledge of a key. There are ways to store the elements electronically
and achieve this behavior without requiring the elements to be stored in order. Dictionary extends Container and adds
three new commands and six new queries. Commands addKey, removeKey, and changeValue allow us to add or remove
a key or change the value associated with a key in the dictionary. Queries allow us to check if the dictionary containsKey
or containsValue or to get the valueFor a key. There are queries to return iterators (keys, values, elements) respectively
on the keys, values, or elements in the dictionary. Listing 10.14 gives details for interface Dictionary .

Listing 10.14 Interface Dictionary

/** Interface Dictionary
* A dictionary contains instances of Association: key-value pairs
* A class for a key must implement equals() from class Object
*/
package foundations;
import java.util.*;

public interface Dictionary extends Container {

 // Commands

 /** Add an association <key-value>
 * If the key already exists, set its value
 */
 public void addKey (Object key, Object value);

 /** Remove association with key if found
 */
 public void removeKey (Object key);

 /** Change value for specified key
 * Throw NoSuchElementException if key not found.
 */
 public void changeValue (Object key, Object value);

 // Queries

 /** Return true if key is in dictionary
 */
 public boolean containsKey (Object key);

 /** Return value for specified key
 * Throw NoSuchElementException if key not found
 */
 public Object valueFor (Object key);

Page 190

 /** Return true if the dictionary contains value
 */
 public boolean containsValue (Object value);

 /** Return iterator over the entries - Associations
 */
 public Iterator elements ();

 /** Return iterator over all keys
 */
 public Iterator keys ();

 /** Return iterator over all values
 */
 public Iterator values ();
}

10.4.5—
The Set Interface

A Set is a container that specifically disallows duplicate objects. Further, it supports typical mathematical operations on
sets such as union, difference, and others. Interface Set extends Container and adds two new commands (add, remove)
for adding and removing objects plus five new queries. Three of the new queries represent set operations (union,
intersection, difference). One may test to see if the current set is a subSet of another set and check if the set contains an
object. No iterator is provided for Set. Listing 10.15 gives details for interface Set .

Listing 10.15 Interface Set

/** Interface Set
*/
package foundations;

public interface Set extends Container {

 // Commands

 /** Add obj to the set
 */
 public void add (Object obj);

 /** Remove obj from the set
 */
 public void remove (Object obj);

Page 191

 // Queries

 /** Return the union of receiver with s
 */
 public Set union (Set s);

 /** Return intersection of receiver with s
 */
 public Set intersection (Set s);

 /** Return difference of receiver with s
 */
 public Set difference (Set s);

 /** Return true if receiver is a subset of s
 */
 public boolean subset (Set s);

 /** return true if obj is in the set
 */
 public boolean contains (Object obj);
}

10.4.6—
The Heap Interface

A Heap is a special kind of binary tree satisfying the heap-ordering property. It typically may be implemented using a
binary tree; however, the interface does not extend BinaryTree for several reasons. First, we add commands for adding
(add) and removing (removeTop) elements (specific to a heap). A heap is one binary tree for which we do not much care
about average path length, or the maximum level. It always satisfies the shape property of a complete binary tree. And
finally, we usually are interested in only one kind of traversal called a level-order traversal. Interface Heap extends
Container and adds three new commands and two new queries. In addition to add and removeTop, we have a new
command to sort the elements in the heap. A sorted heap is still a heap. Query top allows us to access the top of the heap
and traverseLevels returns a level-order iterator on the elements of the heap. Listing 10.16 gives details for the Heap
interface.

Listing 10.16 Interface Heap

/** Interface Heap - contained objects must implement Comparable
* root contains minimum value
*/
package foundations;
import java.util.*;

Page 192

public interface Heap extends Container {

 // Commands

 /** Add obj to the heap, maintaining a heap
 */
 public void add (Comparable obj);

 /** Remove top obj from the heap, maintaining a heap
 * throw NoSuchElementException if empty
 */
 public void removeTop ();

 /** Sort the elements in the heap, maintaining a heap
 * use level-order heapsort algorithm
 */
 public void sort ();

 // Queries

 /** Return contents of the root - top of the heap
 * throw NoSuchElementException if heap is empty
 */
 public Comparable top ();

 /** Return a level-order iterator
 */
 public Iterator traverseLevels ();
}

10.5—
UML Description of Container Hierarchy

The relationships among the various Container interfaces, plus supporting interfaces and classes, are easily visualized by
a class diagram. We present in Figure 10.4 a class diagram of all the interfaces in the foundations package with
supporting class Association and supporting interfaces (Iterator, Comparable, Comparator) from the Java 2 Platform.
Interfaces are identified by the stereotype «interface» appearing in the class name partition (the top part of each class
icon).

Interface Comparator is part of the Java 2 Platform and is included for that reason. It provides a single method for
comparing objects that do not implement the Comparable interface. We will not use Comparator in our implementations
of the Container interfaces.

Page 193

Figure 10.4.
The core interfaces (plus supporting interfaces) and classes in package foundations.

Page 194

10.6—
Summary

In this chapter we have presented the framework for a hierarchy of containers by using the Java interface. In developing
the hierarchy of interfaces we have followed the guideline that inherited behavior and type constraints must be valid at
every level.

• Container is the top-level container interface. It provides only those commands and queries that may be used without
modification by all container types.

• Stack is a simple linear container of objects. It exhibits first-in, last-out behavior.

• Queue is a simple linear container of objects. It models a waiting line with first-in, first-out
behavior.

• A List is a linear container that allows access, addition, and removal of objects at both ends. An IndexableList is a List
that also allows access, addition, and removal of objects at a specified index location. A PositionableList is a List that
allows access, addition, and removal of objects before or after a specified object in the list.

• A BinaryTree is a nonlinear container of objects. Its structure consists of binary nodes that may have, at most, two
descendants that are also binary trees.

• A Heap is a special binary tree that shares none of the specific behavior that applies to general Binary Tree containers.
It is a ''complete" binary tree that also satisfies the heap property (the object contained in a node is less than or equal to
the contents of nodes in its descendants).

• A PriorityQueue is a container of Comparable objects. It has the property that the highest priority object is always
removed next.

• A SearchTable is a container whose contained objects must be Comparable . The ability to test for containership and to
get a contained object is part of the behavior of a SearchTable. Duplicates are optionally disallowed in our SearchTable .

• A Dictionary is a container of <key-value> pairs, that is, instances of Association. Its behavior is characterized by
accessing, adding, and removing elements based on the keys. An OrderedDictionary is a dictionary whose elements are
ordered by keys. Its contained objects must be Comparable , making an OrderedDictionary a kind of SearchTable.
Duplicates are optionally disallowed in our Dictionary and OrderedDictionary.

• A Set is a container of objects with the strict behavior that duplicates are not allowed. The behavior of a Set is
consistent with mathematical sets.

10.7—
Exercises

1 Given that containers contain data (objects) and that the structure and form of how a container organizes these data are
important, explain as clearly as possible why the Java interface (which specifically disallows fields except

Page 195

for static constants) is a valid construct for representing the container hierarchy.

2 Instances of class Association are used as contained objects in Dictionary and OrderedDictionary as well as other
containers. Class Association overrides the equals query inherited from Object and implements compareTo from
interface Comparable . Both equals and compareTo test for equality between two instances of Association. Each defines
a different test for equality. Explain the difference and why it is desirable.

3 Of all the containers, Set is the only one that strictly disallows duplicates; however, other containers may optionally
disallow duplicates. Specifically, dictionaries and search tables may disallow duplicates. For each container interface,
describe briefly the pros and cons or desirability for allowing/disallowing duplicates.

4 Using your knowledge of the behavior of a Queue and of a PriorityQueue, explain how a PriorityQueue (where
objects are removed based on priority) has anything in common with a Queue .

5 A Heap is defined as a special kind of BinaryTree and a BinarySearchTree is a kind of BinaryTree , yet neither of these
two containers is an extension of BinaryTree. Explain why.

6 For any container to be useful, we must be able to add and remove objects, yet Container does not define any
commands for adding and removing. Why?

7 In terms of accessing all the elements in a container, how does an Iterator object offer an advantage over simple query
methods that actually iterate through all objects in the container for you? When is it better to use a simple query as
opposed to returning an Iterator?

8 In implementing a container abstract data type, we are constrained to use the features of the programming language of
choice. Arrays have been a part of most modern programming languages and provide one choice for the underlying data
structure in a container implementation. What other choice(s) are provided by the Java programming language
(independently of its predefined classes such as Vector, etc.)? List all options and justify your answer. Do other object-
oriented languages provide the same choice(s)? Do non–object-oriented languages provide the same choice(s)?

9 If Java provided the capability for generic types, how would the Container hierarchy be affected? Specifically, how
would interface Container change?

10 Given that elements in a SearchTable or any of its subinterfaces must be Comparable , how would we place objects
into a search table whose classes are already defined and do not implement interface Comparable ?

11 Present arguments for and against placing the container interfaces in a package. We clearly have chosen to place
them in a package called foundations . What advantages have we gained and what compromises have been made as a
result of this decision?

TE
AM
FL
Y

Team-Fly®

Page 196

12 There are numerous examples (the Java collections classes, the Java generic library, libraries defined by other authors
of CS 2 books, standard libraries in other languages) of ''container" classes. Each uses its own logic for organizing,
naming, and defining the interfaces/classes representing the containers. Make a list of specific containers and their
properties, showing similarities and differences. You may optionally choose from containers in one or more of the above
examples and contrast your results with those presented in this chapter.

Page 197

11—
Stack and Queue

11.1—
The Stack

A stack is one of the simplest and perhaps most widely used container types. Many software applications require the
logical equivalent of piling objects on top of each other. The only object that may be accessed from a stack is the most
recent object placed onto the stack. We refer to this ordering as last in, first out.

A stack's commands and queries define its behavior. These methods specify what one can do with a stack object. The
interface for Stack given in Listing 10.2 and repeated in Listing 11.1 provides a precise specification of the behavior of a
stack.

The push command is used to add a new object to a stack. The pop command is used to remove the object on the top of
the stack. The top query returns the object on top of the stack without removing it. A command for removing all objects
from the stack (makeEmpty) and queries for determining whether the stack is empty (isEmpty) and the number of
elements on the stack (size) are inherited from class Container .

Listing 11.1 Interface Stack

/** Interface Stack
*/
package foundations;
public interface Stack extends Container {

 // Commands

 /** Add an object onto the top of the stack
 */
 public void push (Object obj);

 /** Remove an object from the top of the stack
 * Throws NoSuchElementException if stack is empty
 */
 public void pop ();

 // Queries

Page 198

 /** Return without removing, the top object on the stack
 * Throws NoSuchElementException if stack is empty
 */
 public Object top ();
}

We consider two implementations of a stack in this chapter. The first, ArrayStack, is a fixed implementation of specified
size. Once this size is set, it cannot be changed. Any insertions that exceed the capacity of this fixed size will result in an
error. The second implementation presented in this chapter, LinkedStack, is a dynamic implementation. The size of the
stack grows on demand as items are inserted. As we shall see later, accessing fixed structures is generally faster than
accessing dynamic structures. We consider each type of stack in the sections that follow.

11.2—
ArrayStack

In the fixed stack implementation ArrayStack, an internal array field data is used to hold the objects that comprise the
stack.

Figure 11.1 depicts the internal structure of the ArrayStack when the capacity is set to 5 and the stack contains 3 objects
(in indices 1, 2, and 3). In the interest of making the algorithms easier to understand, we use ''natural" indexing starting
at index 1. The first index, index 0, is not used at all. Objects obj1, obj2, and obj3 are pushed (inserted) successively
onto the stack.

We examine the algorithmic details of the commands push and pop and the query

push

• Increment top.

• Insert the new element into the index position top in the array.

pop

• Decrement top.

top

• Return the element in index top.

Listing 11.2 presents the details of class
ArrayStack.

Figure 11.1.
Internal structure of ArrayStack .

Page 199

Listing 11.2 Class ArrayStack

/** A fixed stack implementation
*/
package foundations;
import java.util.*;
public class ArrayStack implements Stack {

 // Fields

 private int capacity = 101; // Default value
 private Object [] data; // Holds the information in the stack
 private int top =0; // Tracks last element inserted

 // Constructors

 public ArrayStack () {
 this(101);
 }

 public ArrayStack (int capacity) {
 this.capacity = capacity;
 data = new Object[capacity + 1];
 }

 // Commands

 public void push (Object item) {
 top++;
 try {
 data[top] = item;
 }
 catch (ArrayIndexOutOfBoundsException ex) {
 top--;
 throw new ArrayIndexOutOfBoundsException(
 ''Stack capacity exceeded.");
 }
 }

 public void pop () {
 if (isEmpty())
 throw new NoSuchElementException("Stack is empty.");
 else {
 data[top] = null;
 top--;
 }
 }

Page 200

 public void makeEmpty () {
 top = 0;
 }

 // Queries

 public Object top () {
 if (isEmpty())
 throw new NoSuchElementException(''Stack is empty.");
 else
 return data[top];
 }

 public boolean isEmpty () {
 return top == 0;
 }

 public int size () {
 return top;
 }

 static public void main(String[] args) {
 ArrayStack myStack = new ArrayStack(5);
 myStack.push(new Integer(1)); // obj1 in Figure 11.1
 myStack.push(new Integer(2)); // obj2 in Figure 11.1
 myStack.push(new Integer(3)); // obj3 in Figure 11.1
 System.out.println("myStack.size() = " + myStack.size();
 myStack.pop();
 System.out.println("myStack.size() = " + myStack.size
());
 System.out.println ("myStack.top() = " + myStack.top());
 }
}

Output of Listing 11.2

myStack.size() = 3
myStack.size() = 2
myStack.top() = 2

Explanation of Listing 11.2

Two constructors are provided. The first constructor with no parameters sets capacity to allow 100 objects in the stack
by default (index 0 does not store an object). It does this by invoking the second constructor with capacity as its
parameter. The second constructor is the key constructor and allows the caller to determine the fixed size of the stack.

In command push an attempt to write a value into data[index] where index is not between 0 and capacity -1 causes an
ArrayIndexOutOfBoundsException to be thrown. This exception is trapped and rethrown with a new message indicating

Page 201

that the capacity of the stack has been exceeded. Otherwise, the index top is incremented by one and the item being
added is put at position top.

In command pop, a NoSuchElementException is thrown if an attempt is made to remove an element from an empty
stack. Otherwise, the datum stored at index top is set to null and top is decremented by one. Setting data [top] to null
enables the automatic garbage collector to reclaim the storage at this array position. We note that pop is implemented as
a command since it changes the internal state of a stack without returning any information.

The query top throws a NoSuchElementException if an attempt is made to access information that does not exist.
Otherwise, the function returns the object stored at index top.

Function main is included as a short test stub. In this function, a stack object, myStack, is created of fixed size 5. Three
integer objects that correspond to obj1, obj2, and obj3 in Figure 11.1 are inserted using the push command. The query
size is invoked, the stack is popped, and the query size is again invoked. Test stubs of this kind are often embedded as a
function main in a class not intended to serve as a main application class. Such test stubs provide a ''quick and dirty"
mechanism or sanity check to verify major aspects of the reusable class.

Later in the chapter a complete stack laboratory is constructed to enable more extensive testing and examination of the
Stack abstraction.

11.3—
LinkedStack

The LinkedStack implementation of Stack is a dynamic stack implementation. The storage associated with such a stack
grows and shrinks as objects are added and removed from the stack. This is in contrast to the ArrayStack presented in
Section 11.2. The storage associated with ArrayStack is determined when the stack is constructed and, once chosen,
remains constant.

Dynamic structures offer more flexibility since their capacity does not have to be known in advance. The price that must
usually be paid for this flexibility is speed. Fixed structures generally perform faster than dynamic structures.

The information contained in a LinkedStack is contained within a Node class. This class may be defined as a stand -alone
class or as an inner class within class LinkedStack. We choose to make Node an inner class since it is dedicated
exclusively to serve class LinkedStack .

Inner class Node contains two fields, item (which contains the object being stored) and next (a reference to the next Node
in the stack).

Listing 11.3 presents inner class Node, which is contained in LinkedStack.java.

Listing 11.3 Class Node

private class Node {

 // Fields

 private Object item;
 private Node next;

Page 202

 // Constructor

 private Node (Object element, Node link) {
 item = element;
 next = link;
 }
}

Class Node is designated as private to ensure that it cannot be accessed outside of class LinkedStack. The two fields and
constructor are also private to further enforce internal use only. Everything in class Node is accessible within
LinkedStack since all the features of class LinkedStack (public, protected, and private) are accessible within the class.

We shall use a linked-list structure to implement LinkedStack (thus the name LinkedStack). A linked-list structure
consists of a sequence of nodes with each node containing a reference or pointer to the next node in the sequence. If we
draw such a linked-list structure from left to right, the most recent object pushed onto the stack would be the leftmost
node and the oldest object to have been pushed onto the stack would be the rightmost node. Each time we add a node
(command push) to the LinkedStack this node becomes the first node in the linked-list structure. The oldest node is
linked to null, which serves as a terminator of the linked list. We illustrate this in Figure 11.2. The arrows in Figure 11.2
represent the values of fields (top and next). The last node in this sequence has a next field with the value null. This is
why the final arrow is shown with value null.

The LinkedStack must be connected to the linked list of nodes. This is accomplished by defining a top field within class
LinkedStack that holds a reference to the top node of the linked list of nodes.

Whenever an object is pushed onto the LinkedStack, a new Node is created and linked to the previous top node. This is
illustrated in Figure 11.3.

When the LinkedStack is popped, its pointer to top is modified and assigned to the second node in the linked list or null
if there is no second node.

The implementation of LinkedStack is presented in Listing 11.4.

Figure 11.2.
Linked-list structure.

Page 203

Figure 11.3.
LinkedStack.

Listing 11.4 Class LinkedStack

/** A dynamic implementation of Stack
*/
package foundations;
import java.util.*;

public class LinkedStack implements Stack {

 // Fields

 private Node top = null;
 private int numberElements = 0;

 // Commands

 public void push (Object item) {
 Node newNode = new Node(item, top);
 top = newNode;
 numberElements++;
 }

 public void pop () {
 if (isEmpty())
 throw new NoSuchElementException
(''Stack is empty.");
 else {
 Node oldNode = top;
 top = top.next;
 numberElements--;
 oldNode = null;
 }
 }

 public void makeEmpty () {
 while (top != null) {
 Node previous = top;

Page 204

 top = top.next;
 previous = null;
 }
 numberElements = 0;
 }

 // Queries

 public Object top () {
 if (isEmpty())
 throw new NoSuchElementException(''Stack is empty.");
 else
 return top.item;
 }

 public boolean isEmpty () {
 return top == null;
 }

 public int size () {
 return numberElements;
 }

 private class Node {

 // Fields

 private Object item;
 private Node next;

 // Constructors

 private Node (Object element, Node link) {
 item = element;
 next = link;
 }
 }

 static public void main(String[] args) {
 LinkedStack myStack = new LinkedStack();
 myStack.push(new Integer(1));
 myStack.push(new Integer(2));
 myStack.push(new Integer(3));
 System.out.println("myStack.size() = " + myStack.size
());
 myStack.pop();
 System.out.println("myStack.size() = " + myStack.size
());
 System.out.println ("myStack.top() = " + myStack.top());
 }
}

Page 205

The output is the same as for Listing 11.2. Let us examine some of the commands and queries of Listing 11.4.

Command push

The statement

Node newNode = new Node(item, top)

constructs a new node initializing it with item and having it point to what is currently node top.

The next line of code assigns top to the newNode . Finally, the number of elements is incremented by one.

Command pop

The field top is assigned to top.next . The number of elements is decremented by one and the previous top node is
assigned to null.

Command makeEmpty

A while loop traverses through all the nodes in the linked list, setting each to null. The top field is used in this loop so
that when the loop is terminated, top has the value null.

11.4—
Comparing the Efficiency of ArrayStack with LinkedStack

To compare the efficiency of the fixed stack versus the dynamic stack we shall determine the time that it takes to push
and then pop a large number of items using each stack type. To do this we need a timer. Listing 11.5 presents the code
for a TimeInterval class.

Although timing is a useful and common method for determining the relative efficiency of two implementations (fixed
and dynamic stack in this case), it is subject to some variability that is sometimes out of the control of the programmer.
Timing results may be influenced by the operating system that may cache segments of code after repeated use, the
quantity of available RAM, the granularity of the clock, and the number of users accessing the computer in a multiuser
system. Appendix B introduces algorithm complexity analysis. Using such methods one can often determine the relative
efficiency of implementations in a machine/operating system–independent manner.

In the case of ArrayStack and LinkedStack, the push and pop commands are faster using the internal array in the fixed
stack compared to the linked nodes in the dynamic stack. Inserting (pushing) a stack element in the fixed stack takes
fixed time – namely, the time required to insert an element into a particular index in the array. Pushing a stack element
in the dynamic stack requires creating a new node (dynamic storage allocation is generally a relatively slow operation),
assigning to its fields, and linking the new node to the previous first node. This requires more computational effort
(more CPU cycles).

TE
AM
FL
Y

Team-Fly®

Page 206

Listing 11.5 Class TimeInterval

/**
 * A timing utility class useful for timing code segments.
*/
public class TimeInterval {

 private long startTime, endTime;
 private long elapsedTime; // Time interval in milliseconds

 // Commands
 public void startTiming () {
 elapsedTime = 0;
 startTime = System.currentTimeMillis();
 }

 public void endTiming () {
 endTime = System.currentTimeMillis();
 elapsedTime = endTime - startTime;
 }

 // Queries
 public double getElapsedTime () {
 // Return time in seconds
 return (double) elapsedTime / 1000.0;
 }
}

We construct an application that allows the user to input the number of pushes and pops. The application outputs the
processing time for each type of stack.

A Windows application was written in which 100,000 Integer objects were pushed and then popped from an ArrayStack
and from a LinkedStack. The GUI is shown below.

It can be seen from these results that the ArrayStack is about twice as fast as the LinkedStack. Building this application is
left as an exercise for the reader.

Page 207

11.5—
Queue

A queue is an information structure in which the first item that is inserted is the first that is available (first in, first out).
This is in contrast to a stack in which the first item that is available is the last item inserted (first in, last out). Many
software applications require the logical equivalent of accessing ''things" in the same order as inserted. This is true in
traffic systems in which vehicles line up at a traffic light or airplanes hold to land in the order in which they arrive at an
airport. It is also true in many service-based systems, such as a bank or supermarket, in which customers line up in front
of a server (teller or checkout person).

A queue's commands and queries define its behavior. These methods specify what one can do with a queue object. The
interface for Queue given in Listing 10.3 and repeated in Listing 11.6 provides a precise specification of the behavior of
a queue.

Listing 11.6 Interface Queue

/** Interface Queue
*/
package foundations;
public interface Queue extends Container {

 // Commands

 /** Add an object at the rear of the queue
 */
 public void add (Object obj);

 /** Remove an object from the front of the queue
 * Throws NoSuchElementException if queue is empty
 */
 public void remove ();

 // Queries

 /** Return without removing, the front object in the queue
 * Throws NoSuchElementException if queue is empty
 */
 public Object front ();
}

In addition to the commands and queries inherited from Container , a queue provides the commands add and remove and
the query front.

We shall present only a dynamic implementation of Queue , called LinkedQueue, and leave the fixed implementation as
an exercise for the reader.

Page 208

11.6—
LinkedQueue

The LinkedQueue also requires the services of an inner class Node. This class holds the information that is stored in the
queue. It has the same properties as inner class Node used in the LinkedStack. Its implementation is given in Listing 11.3
and is reused in LinkedQueue.java.

We shall employ the same type of linked-list node structure that was used for the LinkedStack. The details of add and
remove will of course be changed to accommodate the different ordering rule of a queue: last in, last out (or first in, first
out).

The implementation of class LinkedQueue is given in Listing 11.7.

Listing 11.7 Class LinkedQueue

/**
 * Dynamic queue implementation
*/
package foundations;
import java.util.*;

public class LinkedQueue implements Queue {

 // Fields

 private Node first = null;
 private int numberElements = 0;

 // Commands

 public void add (Object item) {
 Node newNode;
 if (numberElements == 0) {
 newNode = new Node(item, null);
 first = newNode;
 }
 else {
 Node currentNode = first;
 Node previousNode = null;
 while (currentNode != null) {
 previousNode = currentNode;
 currentNode = currentNode.next;
 }
 newNode = new Node(item, null);
 previousNode.next = newNode;
 }
 numberElements++;
 }

Page 209

 public void remove () {
 if (isEmpty())
 throw new NoSuchElementException
(''Queue is empty.");
 else {
 Node oldNode = first;
 first = first.next;
 numberElements-;
 oldNode = null;
 }
 }

 public void makeEmpty () {
 while (first != null) {
 Node previous = first;
 first = first.next;
 previous = null;
 }
 numberElements = 0;
 }

 // Queries

 public Object front () {
 if (isEmpty())
 throw new NoSuchElementException("Queue is empty.");
 else
 return first.item;
 }

 public boolean isEmpty () {
 return first == null;
 }

 public int size () {
 return numberElements;
 }

 private class Node {

 // Fields

 private Object item;
 private Node next;

 // Constructors

Page 210

 private Node (Object element, Node link) {
 item = element;
 next = link;
 }
 }

 public static void main (String [] args) {
 LinkedQueue myQueue = new LinkedQueue();
 myQueue.add(new Integer(1));
 myQueue.add(new Integer(2));
 myQueue.add(new Integer(3));
 System.out.println(''myQueue.size() = " + myQueue.size());
 myQueue.remove();
 System.out.println("myQueue.size() = " + myQueue.size());
 System.out.println("myQueue.front() = " + myQueue.front());
 }
}

Output of Listing 11.7

myQueue.size() = 3
myQueue.size() = 2
myQueue.front() = 2

We examine some of the interesting methods of Listing 11.7.

Command add

If the number of elements is 0, a new node is created and linked to null. The field first of LinkedQueue is assigned to the
new node.

If the number of elements is greater than 0, a while loop is used to determine the last node in the linked list. A new node
is created and linked to null. The last node in the linked list (previousNode) is linked to the new node.

Command remove

If the number of elements is 0, NoSuchElementException is thrown.

If the number of elements is greater than 0, the field first is assigned to first.next. The old first node (oldNode) is set to
null.

A test stub is provided in function main that is similar to the test stub in class LinkedStack . These test stubs are not very
interesting.

In the next section we develop a full -featured stack/queue laboratory GUI application that allows all of the features of
Stack and Queue to be exercised.

11.7—
Stack/Queue Laboratory

A stack/queue laboratory has been written to test and exercise the stack-and-queue behavior. A screen shot of the
program in action is shown in Figure 11.4. You

Page 211

Figure 11.4.
The StackQueueLab application.

are encouraged to copy the files for this lab from foundations.zip and experiment with each data structure.

The combo box at the top left allows the user to choose ''ArrayStack," "LinkedStack," or "LinkedQueue" (choice made
above). When the program is launched only the "Construct Data Structure" panel is visible. When the "Invoke
Constructor" button is clicked, the "Commands" panel and the "Queries" panel are both made visible. The "Construct
Data Structure" panel and combo box are disabled and the "Reset" button is enabled. If the user selects "LinkedQueue,"
the buttons "push," "pop," and "top" get labeled "add," "remove," and "front," as shown.

11.8—
Summary

• A stack is one of the simplest and perhaps most widely used container types. Many software applications require the
logical equivalent of piling objects on top of each other.

Page 212

• The push command is used to add a new object to a stack. The pop command is used to remove the object on the top of
the stack. The top query returns the object on top of the stack without removing it.

• In the fixed stack implementation ArrayStack, an array field data is used to hold the objects that comprise the stack.

• The LinkedStack implementation of Stack is a dynamic stack implementation. The storage associated with such a stack
grows and shrinks as objects are added and removed from the stack.

• Dynamic structures offer more flexibility since their capacity does not have to be known in advance. The price that
must usually be paid for this flexibility is efficiency. Fixed structures generally perform faster than dynamic structures.

• A queue is an information structure in which the first item that is inserted is the first that is available (first in, first out).
This is in contrast to a stack , in which the first item that is available is the last item inserted (first in, last out).

11.9—
Exercises

1 Construct a GUI application as described in Section 11.4 that compares the efficiency of an ArrayStack to a
LinkedStack.

2 Implement class ArrayQueue. Include some test code in function main that inserts the values 3, 4, 5, 6, 7, and 8, does a
remove, and outputs the front of the queue and its size.

3 Construct a GUI application similar to the one in Exercise 1 that compares the efficiency of the ArrayQueue built in
Exercise 2 with the LinkedQueue presented in this chapter.

4 List three specific applications in which you believe it would be useful to utilize a stack. Explain the purpose of the
stack in each of these applications.

5 List three specific applications in which you believe it would be useful to utilize a queue. Explain the purpose of the
queue in each of these applications.

6 Suppose we add an internal field to the implementation of class LinkedQueue as follows (new field shown in
boldface):

// Internal fields
private Node first;
private Node last;
int numElements;

This new field last is always a reference to the last node in the list representing the queue. The command add is expected
to be much more efficient. Explain why.

Page 213

Reimplement all the methods of class LinkedQueue making sure to correctly use and update the last field. Include some
test code in function main that performs the same operations as given in the test function of Exercise 2.

7 Implement a class InefficientQueue in terms of two internal stacks. All the methods required in a Queue are to be fully
implemented. You are not to use class Node explicitly. The goal of this problem is to get you to use the Stack abstraction
while implementing a Queue abstraction. Include some test code in function main that performs the same operations as
given in the test function of Exercise 2.

Explain why this method for implementing a Queue is quite inefficient (thus the name of the class).

public class InefficientQueue implements Queue {

 // Fields
 LinkedStack stackl, stack2;

 // No other fields should be used
}

8 Implement a class InefficientStack in terms of two internal queues in a manner similar to Exercise 7. The only two
fields that you may use in this class are queue1 and queue2. Include a test function main that pushes the values 5, 4, 3, 2,
and 1 onto the stack, pops the stack once, and outputs the top of the stack and its size.

9 Implement a VectorStack , another dynamic stack, using an internal field of type java.util.Vector to hold the data.
Include a test function main that performs the same operations as those given in Exercise 8.

10 Implement a VectorQueue, another dynamic queue, using an internal field of type java.util.Vector to hold the data.
Include some test code in function main that performs the same operations as given in the test function of Exercise 2.

11 Add a query with signature public VectorStack copy() in your class VectorStack (from Exercise 9) that creates and
returns a new stack and fills it with the elements contained in the receiver (the stack object sent the message).

Page 214

12—
Application of Stack

The main application of this chapter is algebraic expression evaluation. This is a classic and important problem. An
algebraic expression containing single character operands and the four arithmetic operators is input as a string. When
numeric values are assigned to each operand our goal is to be able to evaluate the arithmetic expression on the fly. The
String representing the arithmetic expression is not known until runtime.

What makes this problem particularly interesting is that the core of the solution requires two stacks, each holding
different types of data. The solution illustrates how abstractions (the stack in this case) may be utilized to provide an
effective underpinning for the solution to a complex problem.

12.1—
Algebraic Expression Evaluation

Problem: Develop a Java software application that takes an algebraic expression as an input string. An example of such
an algebraic expression is (a + b) ∗ c - d + e ∗ f. After numeric values are assigned to each operand (values for a, b, c, d,
e, and f), the algorithm must compute the value of the algebraic expression.

Input: A string representing an algebraic expression involving n operands and an n-tuple representing the values for the
operands (i.e., numeric values for each operand).

Output: The value of the expression for the particular n-tuple of input operand values.

Solution of Problem :

1. Conversion from infix to postfix

The first step in solving this problem involves a transformation of the input algebraic expression from infix to postfix
representation. Infix is the format normally used in representing an algebraic expression. Postfix is a format that places
an operator directly after its two operands.

The infix expression a ∗ b converts to the postfix expression ab∗ (the way you would perform this computation on most
Hewlett-Packard (HP) scientific calculators). One can interpret the postfix representation by reading from right to left.
For example, ''multiply the previous two operands by each other."

Let us convert the algebraic expression a ∗ (b + c) to postfix. The result is abc+ ∗. This postfix representation may be
interpreted by finding the first operator

Page 215

Figure 12.1.
Steps in evaluating postfix

expression using stack.

symbol, ''+". This operates on the previous two operands, b and c. The " ∗" operator then operates on its previous two
operands, (b + c) and a, by forming the product of these two operands.

What about the conversion of the algebraic expression a + b ∗ c to postfix form? The result is abc∗+. The first operator
(reading from left to right) "∗" operates on its two previous operands b and c and performs the product of these. Then the
"+" operator finds the sum of its two previous operands, a and b ∗ c.

Now what about the conversion from infix to postfix of the algebraic expression given above, (a + b) ∗ c - d + e ∗ f? The
postfix representation is: ab + c ∗ d - ef∗+.

We observe that none of the above postfix expressions contain any parentheses. The precedence of operations is
uniquely encapsulated in the postfix expression.

2. Evaluation of postfix expression

TE
AM
FL
Y

Team-Fly®

Once the postfix representation of the input algebraic expression has been accomplished, it is relatively easy to evaluate
the postfix expression when the numeric values of the operands are given. We illustrate the process with an actual
example before expressing the solution in algorithmic terms.

Example. Consider the postfix expression ab + c ∗ d - ef∗+ representing the algebraic expression (a + b) ∗ c - d + e ∗ f.

We initialize a stack of base-type Double. We push the real values of the first two operand symbols a and b onto the
stack in the order in which they appear in the postfix expression (from left to right). Each primitive value is wrapped as a
Double before pushing the values onto the stack. When we encounter our first operator symbol, "+", we pop the operand
stack twice and perform the indicated operation and push the result back onto the operand stack, in this case the numeric
value of (a + b), wrapped as a Double. The numeric value of the next operand, c, is pushed onto the operand stack (on
top of (a + b)). When we encounter the operator "∗", we again pop the operand stack twice and perform the
multiplication of the two operands getting (a + b) ∗ c as a result. We push its value onto the operand stack. Continuing,
we push the numeric value of the operand d onto the stack. When we next encounter the operator "-", we pop the
operand stack twice and perform the subtraction on the two real values coming off the stack producing the result (a + b)
∗c - d. This value is then pushed onto the operand stack. The two real values for e and f are next pushed onto the stack
(on top of the previous value (a + b)∗c - d). When the second "∗" operator symbol is encountered, the stack is popped
twice and the operation of multiplication is performed on the two values obtained from the stack. This represents the
multiplication of e and f. This product value is then pushed onto

Page 216

the stack. Finally, when the last operator symbol ''+" is encountered, the stack is popped twice and the sum of the two
values is computed and then pushed onto the stack. This value equals (a + b) ∗ c - d + e ∗ f. When it is detected that there
are no further input symbols to be processed, the "answer" to the problem (i.e., the value that represents the expression
evaluation) is popped from the stack and returned to the user.

Figure 12.1 shows the sequence of operations involved in evaluating the postfix expression.

We more formally encapsulate the process just described and illustrated in the following algorithm.

Algorithm for Postfix Expression Evaluation

Initialize an operand stack .

Read the sequence of symbols in the postfix expression from left to right .

If an operand symbol is read, push its real value (supplied as input) onto the operand stack (we must convert the
double scalar to a Double wrapper object since the stack specifies Object as its type).

If an operator symbol is read, pop the stack twice (obtaining two numeric values) and then perform the operation
indicated by the operator symbol. Push the resulting numeric value onto the operand stack (again, properly
wrapped as a Double).

After all symbols have been read, the expression value is obtained by popping the stack one last time and returning
the value to the user .

Clearly the key to the success of this algorithm is based on the manipulations of the operand stack.

This raises the obvious question, how do we write a procedure that converts the input string representing the algebraic
expression to be evaluated (always in infix form) to the postfix representation that may be used in the manner described
above for expression evaluation?

12.2—
Algorithm for Converting from Infix to Postfix Representation

A stack shall once again play a key role in performing the desired conversion from infix to postfix representation. We
define an operator stack of base-type Character .

1. Initialize an operator stack.

2. Read the sequence of symbols in the infix expression from left to right passing through white space (ignoring spaces,
tabs, and new lines).

3. If the symbol read is an operand symbol (upper or lower case letters of the alphabet), insert the symbol directly into
the output postfix string.

4. If the symbol read is an operator symbol and the operator stack is empty, push the operator symbol onto the stack,
wrapping it as a Character .

5. If the symbol read is an operator symbol and the operator stack is nonempty, obtain the top of the stack (using the top
query defined in the stack class) and compare the precedence of this top symbol with the newly read operator symbol

Page 217

(e.g., ∗ and / have higher precedence than + and -). If top has lower or equal precedence to the symbol just read, leave
the stack alone; otherwise, append the top symbol to the postfix string and then pop the stack.

6. Push the newly read operator symbol onto the operator stack.

7. When all symbols in the infix string have been read, pop the operator stack and add the symbols directly to the postfix
string.

Note: This algorithm does not take parentheses into account. This will be done at the implementation level.

Example Application of Algorithm

Let us use the infix-to-postfix algorithm to convert the infix string a ∗ b + c to postfix format.

The symbol a is appended to the postfix string. The operator symbol ''∗" is pushed onto the operator stack. The symbol b
is appended to the postfix string. The operator symbol "∗" representing top is compared in precedence to the newly read
operator symbol "+". Since the "∗" is not of lower or equal precedence, it is popped from the stack and appended to the
postfix string (which is now ab∗). The "+" is pushed onto the operator stack. The final symbol c is appended to the
postfix string (since it is an operand symbol). With all symbols read, the operator stack

Figure 12.2.
Use of the operator stack in converting from infix to postfix.

Page 218

Figure 12.3.
Another operator stack used in the conversion from infix to postfix.

is popped (until empty) and in this case only the operator symbol ''+" is appended to the postfix string producing the
final result ab ∗ c+.

Figure 12.2 shows the operator stack as it evolves in the process of converting the infix expression to postfix form.

Another Application of the Algorithm

Let us use the infix-to-postfix algorithm to convert the infix string a + b ∗ c to postfix format.

The symbol a is appended to the postfix string (since it's not an operator symbol). The "+" operator is pushed onto the
operator stack since that stack is initially empty. The symbol b is next appended to the postfix string. When the operator
symbol "∗" is encountered, the top symbol "+" is found to be of lower precedence than the newly read operator symbol
"∗". The algorithm specifies that this newly read symbol "∗" is pushed onto the operator stack (which now has "∗" on top
and "+" directly beneath it). Finally, the last symbol c is appended to the postfix string (which is now abc). The stack is
repeatedly popped until empty and the two operator symbols "∗" and "+" are appended in turn to the postfix string,
which ends up as abc ∗ +.

Figure 12.3 depicts the evolution of the operator stack for the example given above.

12.3—
Implementation of Algebraic Function Evaluation

12.3.1—
Infix to Postfix Conversion

In Listing 12.1 we show most of class FunctionEvaluation focusing only on the details that support infix-to-postfix
representation. This is one of the key steps in the process of algebraic expression evaluation. The class has a field called
operands

Page 219

that is a Vector implementation of Dictionary . The command infixToPostfix contains logic for handling parentheses in
the infix expression. We include a test stub in function main.

Listing 12.1 Class FunctionEvaluation

/** Defines the methods needed to evaluate an algebraic expression
* represented as an infix String
*/
package foundations;
import java.util.*;

public class FunctionEvaluation {

 // Fields
 private String infix, postfix;
 private Dictionary operands = new VectorDictionary();

 // Constructor
 public FunctionEvaluation (String infixExpression) {
 infix = infixExpression.trim().toLowerCase();
 infixToPostfix();
 }

 // Commands

 /*
 * Converts infix producing postfix
 */
 public void infixToPostfix () {
 int infixIndex;
 char ch, topSymbol;
 LinkedStack opStack = new LinkedStack();
 postfix = ''" ;
 for (infixIndex = 0; infixIndex < infix.length();
 infixIndex++) {
 // Get character from the infix String
 ch = infix.charAt (infixIndex);

 if (ch == ' ') // Skip white space
 continue; // Skip back to bottom of loop

 if (ch >= 'a' && ch <= 'z') // operand
 postfix = postfix + ch;

 if (ch == '+' || ch == '-' || ch == '*' || ch == '/' ||
 ch == '(' || ch == ')') { // operator
 if (opStack.size() > 0) {

Page 220

 topSymbol = ((Character)opStack.top()).charValue
();
 if (topSymbol == '(' && ch == ')')
 continue;
 if (precedence (topSymbol, ch) == true) {
 if (topSymbol != '(')
 postfix = postfix + topSymbol;
 opStack.pop();
 }
 }
 if (ch != ')')
 opStack.push (new Character(ch));
 else { // ch == ')'
 char c;
 // pop operator stack down to first left paren
 do {
 c = ((Character) opStack.top()).charValue();
 if (c != '(')
 postfix = postfix + c;
 opStack.pop();
 } while (c != '(');
 }
 }
 }
 // Pop leftover operands
 while (opStack.size() > 0) {
 if ((Character) opStack.top()).charValue() != '(')
 postfix = postfix +
 ((Character)opStack.top()).charValue();
 opStack.pop();
 }
 }

 /** Sets the value associated with an operand */
 public void setKeyValue (char ch, double value) {
 operands.addKey(new Character(ch), new Double(value));
 }

 // Queries

 /** Returns the postfix string */
 public String postfix () {
 return postfix;
 }

 /** Returns the infix string */
 public String infix () {
 return infix;
 }

Page 221

 /** Returns a Dictionary containing the operands and their values
 */
 public Dictionary operands () {
 return operands;
 }

 /** Returns true if operator symb1 has higher
 /* precedence than operator symb2 */
 private boolean precedence (char symb1, char symb2) {
 if ((symb1 == '+' || symb1 == '-') &&
 (symb2 == '*' || symb2 == '/'))
 return false;
 else if ((symb1 == '(' && symb2 != ')') ||
 symb2 == '(')
 return false;
 else
 return true;
 }

 double evaluate () { /* Details to be added later */ }

 // Test stub for algebraic function evaluation
 public static void main (String [] args) {
 FunctionEvaluation f;

 f = new FunctionEvaluation (''a + b * c");
 System.out.println ("Infix expression = " + f.infix() +
 "\nPostfix expression = " + f.postfix());
 f.setKeyValue('a' , 2.0);
 f.setKeyValue('b' , 3.0);
 f.setKeyValue('c' , 4.0);
 System.out.println ("When a = 2.0, b = 3.0, and c = 4.0, f = " +
 f.evaluate());

 f = new FunctionEvaluation ("(a + b) * c");
 System.out.println ("\nInfix expression = " + f.infix() +
 "\nPostfix expression = " + f.postfix());
 f.setKeyValue('a' , 2.0);
 f.setKeyValue('b' , 3.0);
 f.setKeyValue('c' , 4.0);
 System.out.println ("\nWhen a = 2.0, b = 3.0, and c = 4.0,
 f = " + f.evaluate());

 f = new FunctionEvaluation ("a / (b + c)");
 System.out.println ("\nInfix expression = " + f.infix() +
 "\nPostfix expression = " + f.postfix());
 f.setKeyValue('a' , 2.0);
 f.setKeyValue('b' , 3.0);

Page 222

 f.setKeyValue('c' , 4.0);
 System.out.println (''\nWhen a = 2.0, b = 3.0, and c = 4.0,
 f = " + f.evaluate());

 f = new FunctionEvaluation ("a / b + c");
 System.out.println ("\nInfix expression = " + f.infix() +
 "\nPostfix expression = " + f.postfix());
 f.setKeyValue('a' , 2.0);
 f.setKeyValue('b' , 3.0);
 f.setKeyValue('c' , 4.0);
 System.out.println ("\nWhen a = 2.0, b = 3.0, and c = 4.0,
 f = " + f.evaluate());

 f = new FunctionEvaluation ("a + b)/c + d * (e + h)");
 System.out.println ("\nInfix expression = " + f.infix() +
 "\nPostfix expression = " + f.postfix());
 f.setKeyValue('a' , 2.0);
 f.setKeyValue('b' , 3.0);
 f.setKeyValue('c' , 4.0);
 f.setKeyValue('d' , 5.0);
 f.setKeyValue('e' , 6.0);
 f.setKeyValue('h' , 7.0);
 System.out.println ("\nWhen a = 2.0, b = 3.0, and c = 4.0, "
 "d = 5.0, . . . f = " + f.evaluate());
 }
}

Explanation of Listing 12.1

• The constructor strips out leading and trailing blank characters and converts the input string to lower case before
assigning the string to the internal field infix . Then the constructor invokes the function infixToPostfix().

• A local opStack (of type LinkedStack) is constructed inside the method infixToPostfix(). This stack holds operator
symbols as they are encountered in the infix string.

• Since the formal type for the items stored in a LinkedStack is Object , we cannot insert elements of type char since char
is a scalar (primitive) type and is not a subclass of Object . We must therefore wrap the char to a Character . The code
that accomplishes this is:

opStack.push(new Character(ch));

• When we send the query top() to the opStack we receive an object whose formal type is Object. We must therefore
downcast this to Character and then use the method charValue() to obtain the char that is wrapped in the Character .

Page 223

Specifically, the code that accomplishes this is:

topSymbol = ((Character) opStack.top()).charValue();

• Although later we shall construct a laboratory-type Windows application that enables us to fully test the functionality
of algebraic expression evaluation, we include a test stub through function main(). Here we ''hard -wire" several test
cases. We create several different instances of class FunctionEvaluation (objects of type FunctionEvaluation) and send
the command infixToPostFix() to each and then through a query obtain the resulting postfix expression.

• The field operands is defined as type Dictionary . An instance of class VectorDictionary is used in creating an instance
of this abstraction. The details of this class shall be presented and discussed in Chapter 17, which deals with dictionary
data structures.

12.3.2—
Evaluation of Postfix Expression

In order to evaluate the postfix expression, we must be able to associate a numeric value with each operand character
that we encounter in the infix expression. This is accomplished using the command setKeyValue given in Listing 12.1.

The only missing element in class FunctionEvaluation is the query evaluate() . This function is presented in Listing 12.2.

Listing 12.2 Function evaluate

/**
 * Evaluates postfix string to produce numerical answer
*/
public double evaluate () {
 int postfixIndex;
 char ch;
 double operand1, operand2;
 LinkedStack valStack = new LinkedStack();

 for (postfixIndex = 0; postfixIndex < postfix.length();
 postfixIndex++) {
 ch = postfix.charAt (postfixIndex);
 if (ch >= 'a' && ch <= 'z') { // operand
 if (operands.containsKey(new Character(ch)))
 valStack.push (operands.value(new Character(ch)));
 else
 throw new NoSuchElementException(
 "No value for character " + ch +" .");
 }

Page 224

 if (ch == '+' || ch == '-' || ch == '*' || ch == '/' ||
 ch == '(' || ch == ')') { // operator
 operand1 = ((Double) valStack.top()).doubleValue();
 valStack.pop();
 operand2 = ((Double) valStack.top()).doubleValue();
 valStack.pop();
 switch (ch) {
 case '+' :
 valStack.push(
 new Double (operand2 + operand1));
 break;
 case '-' :
 valStack.push(
 new Double (operand2 - operand1));
 break;
 case '*' :
 valStack.push(
 new Double (operand2 * operand1));
 break;
 case '/' :
 if (operand1 != 0.0)
 valStack.push(
 new Double (operand2 / operand1));
 else
 valStack.push(
 new Double (Double.MAX_VALUE));
 }
 }
 }
 double valueToReturn = ((Double) valStack.top()).doubleValue();
 valStack.pop();
 return valueToReturn;
 }

Explanation of Listing 12.2

• A local LinkedStack valStack is declared.

• If the user has entered an operand symbol and associated value (using setKeyValue), this value is pushed onto the
valStack by sending the query value with new Character(ch) as a parameter. An object of type Double is returned by this
query.

valStack.push (operands.value(new Character(ch)));

• If the operand symbol is not found in the operands dictionary a NoSuchElementException is thrown.

TE
AM
FL
Y

Team-Fly®

Page 225

• If during division the denominator is zero, the largest double value is returned (simulation of the value infinity).

12.4—
Function Evaluation Laboratory

A complete Windows application that allows the user to experiment with the important aspects of algebraic function
evaluation is included in the downloadable foundations.zip. You are strongly encouraged to experiment with this GUI
application and study its source code.

The user interface in the function evaluation laboratory is given below.

12.5—
Summary

• The process of evaluating an algebraic function is accomplished in two steps:

1. Convert the expression String from ordinary infix to postfix form since it is relatively easy to evaluate the postfix
expression.

2. Evaluate the postfix expression.

• The algorithm for evaluating a postfix expression is given as follows:

(1) Initialize an operand stack.

(2) Read the sequence of symbols in the postfix expression from left to right .

(3) If an operand symbol is read, push its real value (supplied as input) onto the operand stack (we must convert the
double scalar to a Double wrapper object since the stack specifies Object as its type).

Page 226

(4) If an operator symbol is read, pop the stack twice (obtaining two numeric values) and then perform the
operation indicated by the operator symbol. Push the resulting numeric value onto the operand stack (again
properly wrapped as a Double).

(5) After all symbols have been read, the expression value is obtained by popping the stack one last time and
returning the value to the user .

12.6—
Exercises

1 Convert the following expressions from infix to postfix:

a. (a + b)/(c + d) ∗ e
b. ((a + b) ∗ c) ∗ ((c + d) ∗ e)
c. (a + b)/(c + d) - (e ∗ f + g)/(h + i)

2 Convert the following expressions from postfix to infix:

a. ab + c/d∗
b. abcd + /+

3 Develop an algorithm for converting an infix expression with parentheses to prefix form and evaluating the resulting
expression. (Hint: Prefix expressions should be evaluated from left to right).

Note: In a prefix expression the operator precedes the two operands (e.g., the infix expression a ∗ b is equivalent to the
prefix expression ∗ab).

4 Suppose we define the symbol $ to denote exponentiation (e.g., 2 $ 4 = 16). We assign a higher precedence to
exponentiation than any other arithmetic operation. Exponentiation is performed from right to left (e.g., 4 $ 2 $ 2 = 4 $
(2 $ 2) = 256). Modify the algorithm for converting infix expressions to postfix form to include exponentiation. Your
solution should still require only one pass of the input infix string. Code and test your algorithm.

5 Extend the code in this chapter to accept strings as operands, not just single characters.

Page 227

13—
Lists

A list is a widely used container abstraction. Lists come in various flavors, so we really have a family of list abstractions.
In real life, lists are used to hold information stored in a particular sequence. This information may be ordered as in a
telephone directory or unordered as in a grocery shopping list.

Some lists allow items to be stored in any order whereas others require a sequential ordering of their data. The simplest
list allows the addition of objects, removal of objects, and access to objects only at two ends, front and rear. An
''indexable" list extends a simple list by allowing the insertion of objects, removal of objects, and access of objects at a
particular index. A "positionable" list extends a simple list by allowing the addition of objects, removal of objects, and
access to objects before or after a specified object in the list. Finally, an "ordered" list extends SearchTable (see Chapter
10) and requires that its elements be comparable. A strict ordering relationship is maintained among the elements of an
ordered list. This is true in a search table.

Lists may be implemented in many ways, both fixed and dynamic. Perhaps the simplest implementation is a singly
linked dynamic implementation. Here links flow in only one direction: from the start of the list to its end. One may
move quite easily in a singly linked list from a given node to its successor but not to its predecessor. A more complex
but efficient dynamic implementation is a doubly linked list. Here links flow in both directions so that one may move
from any node in the list to its successor or to its predecessor. Other implementation variations exist as well, including
dynamic circularly linked lists and fixed implementations. Implementing classes for interface List and its subinterfaces
allows duplicate entries. Class OrderedList, which implements interface SearchTable , does not allow duplicate entries.

In this chapter, we examine a variety of concrete implementations for the various list abstractions.

13.1—
Dequeue – An Implementation of List

A Dequeue is an implementation of a simple List. Objects may be added, removed, or accessed at the front or the rear of
such a list. As a review, Listing 13.1 presents the interface to Container and Listing 13.2 the interface to List. These two
abstractions provide the required commands and queries for our Dequeue.

Page 228

Listing 13.1 Interface Container

/** Interface Container - top level container
*/
package foundations;
import java.io.Serializable;

public interface Container extends Serializable {

 // Commands - see subinterfaces

 /** Remove all objects from the container if found
 */
 public void makeEmpty ();

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty ();

 /** Return the number of objects in the container
 */
 public int size ();
}

Listing 13.2 Interface List

/** Interface List
*/
package foundations;
import java.util.*;

public interface List extends Container {

 // Commands

 /** Add obj at the front of the list.
 */
 public void addFront (Object obj);

 /** Add obj at the rear of the list
 */
 public void addRear (Object obj);

Page 229

 /** Remove object from the front of the list if found.
 */
 public void removeFront ();

 /** Remove object from the rear of the list if found.
 */
 public void removeRear ();

 // Queries

 /** Return without removing the front object in the list
 * Throw NoSuchElementException if list is empty
 */
 public Object front ();

 /** Return without removing the rear object in the list
 * Throw NoSuchElementException if list is empty
 */
 public Object rear ();

 /** return true if the list contains obj
 */
 public boolean contains (Object obj);

 /** return an iterator on the elements in the list
 */
 public Iterator elements ();
}

Our Dequeue class shall implement List. It must provide concrete implementations of the commands makeEmpty (from
Container) plus commands addFront, addRear, removeRear (from List), and the queries size and isEmpty (from
Container) plus queries front, rear, contains, and elements (from List).

As with all our list implementations, we must first decide whether we want a fixed or dynamic implementation. As
discussed in Chapter 11, a fixed implementation requires that the user specify the size of the list in advance and, once
specified, the size cannot be changed. The advantage of such an implementation is efficiency. A dynamic
implementation provides more flexibility since memory is allocated on demand as more objects are added.

We present only dynamic implementations of all the list structures in this chapter, leaving fixed implementations as
exercises for the reader.

13.1.1—
Singly Linked Dequeue

Figure 13.1 depicts the internal structure of a SinglyLinkedDequeue.

A singly linked list of nodes holds the objects of our Dequeue. Fields front and rear ''point" to the beginning and end of
the singly linked list. These

Page 230

Figure 13.1.
Dequeue structure.

fields make it relatively easy to add, remove, or access objects at the front and rear of the Dequeue . Listing 13.3 presents
implementation details of class SinglyLinkedDequeue.

Listing 13.3 Class SinglyLinkedDequeue

/** A singly linked implementation of a Dequeue with duplicates.
*/
package foundations;
import java.util.*;
import java.io.Serializable;

public class SinglyLinkedDequeue implements List {

 // Fields

 protected Node front, rear;
 protected int numberElements;

 // Commands

 /** Remove all objects from the Dequeue, if any */
 public void makeEmpty () {
 while (front != null) {
 Node previous = front;
 front = front.next;
 previous = null;
 }
 numberElements = 0;
 rear = null;
 }

 /** Add obj at the front of the Dequeue */
 public void addFront (Object obj) {
 Node newNode = new Node(obj, front);
 front = newNode;
 if (numberElements == 0)
 rear = front;
 numberElements++;
 }

Page 231

 /** Add obj at the rear of the Dequeue */
 public void addRear (Object obj) {
 Node newNode = new Node(obj, null);
 if (numberElements == 0) {
 front = newNode;
 rear = newNode;
 }
 else {
 rear.next = newNode;
 rear = newNode;
 }
 numberElements++;
 }

 /** Remove object from the front of the Dequeue, if found */
 public void removeFront () {
 if (isEmpty())
 throw new NoSuchElementException
(''Dequeue is empty.");
 else {
 front = front.next;
 numberElements--;
 if (numberElements == 0)
 rear = null;
 }
 }

 /** Remove object from the rear of the Dequeue, if found */
 public void removeRear () {
 if (isEmpty())
 throw new NoSuchElementException("Queue is empty.");
 else if (numberElements == 1) {
 front = null;
 rear = null;
 }
 else { // 2 or more elements
 // Find the node just in front of rear
 Node previous = front;
 while (previous.next != rear)
 previous = previous.next;
 previous.next = null;
 rear = previous;
 }
 numberElements--;
 }

 // Queries

Page 232

 /** Return true if the Dequeue is empty */
 public boolean isEmpty () {
 return numberElements == 0;
 }

 /** Return the number of objects in the Dequeue */
 public int size () {
 return numberElements;
 }

 /** Return without removing the front object in the Dequeue */
 public Object front () {
 if (isEmpty())
 throw new NoSuchElementException(''Dequeue is empty.");
 else
 return front.item;
 }

 /** Return the rear object in the Dequeue without removing it */
 public Object rear () {
 if (isEmpty())
 throw new NoSuchElementException("Dequeue is empty.");
 else
 return rear.item;
 }

 /** Returns true if the Dequeue contains obj otherwise returns
 * false */
 public boolean contains (Object obj) {
 Node current = front;
 while (current != null && !current.item.equals(obj))
 current = current.next;
 return current != null;
 }

 /** Return an iterator on the elements in the Dequeue */
 public Iterator elements () {
 // Load the objects of the Dequeue into a Vector
 Vector v = new Vector();
 Node current = front;
 while (current != null) {
 v.addElement(current.item);
 current = current.next;
 }
 return v.iterator(); // Only valid in Platform 2
 }

Page 233

 /** Models an internal node of dequeue */
 protected class Node implements Serializable {

 // Fields

 protected Object item;
 protected Node next;

 // Constructors

 protected Node (Object element, Node link) {
 item = element;
 next = link;
 }
 }

 public static void main (String[] args) {
 SinglyLinkedDequeue myDequeue = new SinglyLinkedDequeue
();
 // Add three Integer objects to the front of the Dequeue
 myDequeue.addFront(new Integer(5));
 myDequeue.addFront(new Integer(4));
 myDequeue.addFront(new Integer(3));

 // Add three Integer objects to the rear of the Dequeue
 myDequeue.addRear(new Integer(6));
 myDequeue.addRear(new Integer(7));
 myDequeue.addRear(new Integer(8));

 // Remove the front and rear objects
 myDequeue.removeFront();
 myDequeue.removeRear();

 // Obtain an iterator for the Dequeue
 Iterator iter = myDequeue.elements();

 while (iter.hasNext())
 System.out.println (iter.next());

 // Test for the presence of 5 and 8
 if (myDequeue.contains(new Integer(5)))
 System.out.println(''5 is in the Dequeue.");
 else
 System.out.println("5 is not in the Dequeue.");
 if (myDequeue.contains(new Integer(8)))
 System.out.println("8 is in the Dequeue.");
 else
 System.out.println("8 is not in the Dequeue.");

 }
}

Page 234

Output of Listing 13.3

4
5
6
7
5 is in the Dequeue.
8 is not in the Dequeue.

Explanation of Listing 13.3

There are many methods in class SinglyLinkedDequeue. These represent implementations of the promises made in
interfaces Container and List. Protected inner class Node defines the linkable nodes that hold the objects in this
container.

Since the complexities of the methods are roughly equivalent, we shall dissect a few here and leave the rest of the
analysis as an exercise for the reader.

Let us examine command makeEmpty.

public void makeEmpty () {
 while (front != null) {
 Node previous = front;
 front = front.next;
 previous = null;
 }
 numberElements = 0;
 rear = null;
}

The reference front is used directly. As the list is traversed, each element is visited and set to null. This allows the Java
automatic garbage collector to recycle the storage associated with each node. Upon the completion of the loop the field
numberElements is assigned to 0 and the field rear is assigned to null. The field front has already been assigned to null
in the loop.

Next we examine command addRear.

public void addRear (Object obj) {
 Node newNode = new Node(obj, null);
 if (numberElements == 0) {
 front = newNode;
 rear = newNode;
 }
 else {
 rear.next = newNode;
 rear = newNode;
 }
 numberElements++;
}

TE
AM
FL
Y

Team-Fly®

Page 235

The node newNode is constructed using obj with a link to null. If the Dequeue is empty both front and rear are assigned
to the reference newNode . If the Dequeue is not empty the object rear is linked to newNode and then reassigned to
newNode .

Next we examine the command removeRear .

public void removeRear () {
 if (isEmpty())
 throw new NoSuchElementException(''Queue is empty.");
 else if (numberElements == 1) {
 front = null;
 rear = null;
 }
 else { // 2 or more elements
 // Find the node just in front of rear
 Node previous = front;
 while (previous.next != rear)
 previous = previous.next;
 previous.next = null;
 rear = previous;
 }
 numberElements--;
}

If the Dequeue is empty, a NoSuchElementException is generated. If the number of elements equals 1, references front
and rear are assigned to null. If the number of elements is 2 or greater, a while loop is used to determine the node just in
front of rear, node previous . This previous node's value is assigned to null. The value of rear is reassigned to previous
and the field numberElements is reduced by one.

Lastly, we examine the query elements.

public Iterator elements () {
 // Load the objects of the Dequeue into a Vector
 Vector v = new Vector(numberElements);
 Node current = front;
 while (current != null) {
 v.addElement(current.item);
 current = current.next;
 }
 return v.iterator();
}

A local Vector instance v is declared and constructed with an initial capacity equal to numberElements. Using a while
loop, all the elements in the Dequeue are added to the Vector v. Finally the query iterator from class Vector is invoked
returning

Page 236

Figure 13.2.
DoublyLinkedDequeue .

an iterator over elements of the Vector. It is noted that iterator is a new method of class Vector in Java 2 Platform. This
code will not compile using Java Version 1.1.x.

A main function is defined as a quick test stub. This is no substitute for the list laboratory test suite that will be presented
later in this chapter.

13.1.2—
Doubly Linked Dequeue

As an alternative to the singly linked Dequeue discussed in Section 13.1.1 we may implement a doubly linked Dequeue .
Its structure is shown in Figure 13.2

Each node has two references, one forward and one backward. The implementation of class DoublyLinkedDequeue is
given in Listing 13.4.

Listing 13.4 Class DoublyLinkedDequeue

/** Implements Dequeue with forward and backwards links with duplicates
*/
package foundations;
import java.util.*;
import java.io.Serializable;

public class DoublyLinkedDequeue implements List {

 // Fields

 protected Node front, rear;
 protected int numberElements;

 // Commands

 /** Remove all objects from the Dequeue, if any */
 public void makeEmpty () {
 while (front != null) {
 Node previous = front;
 front = front.next;
 previous = null;
 }

Page 237

 numberElements = 0;
 rear = null;
 }

 /** Add obj at the front of the Dequeue */
 public void addFront (Object obj) {
 Node newNode = new Node(obj, front, null);
 if (numberElements == 0)
 rear = newNode;
 else
 front.before = newNode;
 front = newNode;
 numberElements++;
 }

 /** Add obj at the rear of the Dequeue */
 public void addRear (Object obj) {
 Node newNode = new Node(obj, null, rear);
 if (numberElements == 0)
 front = newNode;
 else
 rear.next = newNode;
 rear = newNode;
 numberElements++;
 }

 /** Remove object from the front of the Dequeue, if found */
 public void removeFront () {
 if (isEmpty())
 throw new NoSuchElementException
(''Dequeue is empty.");
 else {
 if (front.next != null)
 front.next.before = null;
 front = front.next;
 numberElements--;
 if (numberElements == 0)
 rear = null;
 }
 }

 /** Remove object from the rear of the Dequeue, if found */
 public void removeRear () {
 if (isEmpty())
 throw new NoSuchElementException("Queue is empty.");
 else if (numberElements == 1) {
 front = null;
 rear = null;
 }

Page 238

 else { // 2 or more elements
 // Find the node just in front of rear
 Node previous = rear.before;
 previous.next = null;
 rear = previous;
 }
 numberElements--;
 }

 // Queries
 /** Return true if the Dequeue is empty */
 public boolean isEmpty () {
 return numberElements == 0;
 }

 /** Return the number of objects in the Dequeue */
 public int size () {
 return numberElements;
 }

 /** Return front item without removing it */
 public Object front () {
 if (isEmpty())
 throw new NoSuchElementException(''Dequeue is empty.");
 else
 return front.item;
 }

 /** Return the rear object in the Dequeue without removing it */
 public Object rear () {
 if (isEmpty())
 throw new NoSuchElementException("Dequeue is empty.");
 else
 return rear.item;
 }

 /** Returns true if the Dequeue contains obj otherwise returns
 * false */
 public boolean contains (Object obj) {
 Node current = front;
 while (current != null && !current.item.equals(obj))
 current = current.next;
 return current != null;
 }

 /** Return an iterator on the elements in the Dequeue */
 public Iterator elements () {
 // Load the objects of the Dequeue into a Vector
 Vector v = new Vector();

Page 239

 Node current = front;
 while (current != null) {
 v. addElement(current.item);
 current = current.next;
 }
 return v.iterator(); // Only valid in Platform 2
 }

 /** Models internal node for DoublyLinkedDequeue */
 protected class Node implements Serializable {
 protected Object item;
 protected Node next;
 protected Node before;

 public Node (Object element, Node link, Node backLink) {
 item = element;
 next = link;
 before = backLink;
 }
 }

 public static void main (String[] args) {
 DoublyLinkedDequeue myDequeue = new DoublyLinkedDequeue
();
 // Add three Integer objects to the front of the Dequeue
 myDequeue.addFront(new Integer(5));
 myDequeue.addFront(new Integer(4));
 myDequeue.addFront(new Integer(3));

 // Add three Integer objects to the rear of the Dequeue
 myDequeue.addRear(new Integer(6));
 myDequeue.addRear(new Integer(7));
 myDequeue.addRear(new Integer(8));

 // Remove the front and rear objects
 myDequeue.removeFront();
 myDequeue.removeRear();

 // Obtain an iterator for the Dequeue
 Iterator iter = myDequeue.elements();

 while (iter.hasNext())
 System.out.println (iter.next());

 // Test for the presence of 5 and 8
 if (myDequeue.contains(new Integer(5)))
 System.out.println(''5 is in the Dequeue.");
 else
 System.out.println("5 is not in the Dequeue.");

Page 240

 if (myDequeue.contains(new Integer(8)))
 System.out.println(''8 is in the Dequeue.");
 else
 System.out.println("8 is not in the Dequeue.");
 }
}

Output for Listing 13.4

4
5
6
7
5 is in the Dequeue.
8 is not in the Dequeue.

13.2—
Positionable List

We shall present two dynamic implementations of positionable lists: SinglyLinkedList and DoublyLinkedList . Each
implements the interface PositionableList . Recall that a positionable list allows insertions at the front or rear of the list as
well as before or after a specified element in the list.

Because of the common protocol between a linked list and a Dequeue (commands addFront, addRear, removeFront,
and removeRear and queries front and rear), class SinglyLinkedList extends SinglyLinkedDequeue and class
DoublyLinkedList extends DoublyLinkedDequeue. This allows us to focus on the new commands and queries provided
by a linked list.

13.2.1—
Singly Linked List

The structure of a singly linked list is the same as a singly linked Dequeue (see Figure 13.1). Listing 13.5 presents the
details of class SinglyLinkedList.

Listing 13.5 Class SinglyLinkedList

/** Implements a positionable list with duplicates.
*/
package foundations;
import java.util.*;

public class SinglyLinkedList extends SinglyLinkedDequeue
 implements PositionableList {

 // Fields are inherited from SinglyLinkedDequeue

 // Commands

Page 241

 /** Insert obj after target object in the list
 */
 public void addAfter (Object obj, Object target) {
 Node itemNode = getNode (target);
 if (itemNode == null)
 throw new NoSuchElementException(
 ''addAfter::target does not exist");
 else {
 Node newNode = new Node (obj, itemNode.next);
 itemNode.next = newNode;
 numberElements++;
 if (this.rear == itemNode)
 rear = newNode;
 }
 }

 /** Insert obj before target object in the list
 */
 public void addBefore (Object obj, Object target) {
 Node itemNode = getNode (target);
 if (itemNode == null)
 throw new NoSuchElementException(
 "addBefore::target does not exist");
 else {
 Node newNode = new Node (obj, itemNode);
 if (this.front == itemNode)
 this.front = newNode;
 else {
 Node beforeNode = nodeBefore(itemNode);
 beforeNode.next = newNode;
 }
 numberElements++;
 }
 }

 /** Delete object after target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is last in the list.
 */
 public void removeAfter (Object target) {
 // Exercise
 }

 /** Delete object before target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is first in the list.
 */

Page 242

 public void removeBefore (Object target) {
 // Exercise
 }

 // Queries

 /** Return object after target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is last in the list.
 */
 public Object elementAfter (Object target) {
 Node targetNode = getNode(target);
 if (!this.contains(target) || targetNode == this.rear)
 throw new NoSuchElementException(
 ''removeAfter::obj does not exist or is last in list");
 else
 return targetNode.next.item;
 }

 /** Return object before target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is first in the list.
 */
 public Object elementBefore (Object target) {
 if (!this.contains(target) || getNode(target) == this.front)
 throw new NoSuchElementException(
 "removeBefore::obj does not exist or is first in list");
 else
 return nodeBefore(getNode(target)).item;
 }

 // Internal methods

 /**
 * For internal use only.
 * This function, available only within this class
 * returns the node associated with value. If value is
 * not present in the list getNode returns null
 */
 protected Node getNode (Object value) {
 Node frontNode = front;
 Node result = null;
 while (frontNode != null) {
 if (frontNode.item.equals(value)) {
 result = frontNode;
 break;
 }
 frontNode = frontNode.next;
 }
 return result;
 }

Page 243

 /**
 * For internal use only.
 * This function, available only within the class
 * returns the node just before someNode. If someNode is null or
 * the only node present in the list, this function returns null.
 */
 protected Node nodeBefore (Node someNode) {
 if (someNode != null && someNode != front) {
 Node previous = front;
 while (previous.next != someNode)
 previous = previous.next;
 return previous;
 }
 else
 return null;
 }

 static public void main (String[] args) {
 SinglyLinkedList myList = new SinglyLinkedList();
 myList.addFront(new Integer(3));
 myList.addFront(new Integer(2));
 myList.addFront(new Integer(1));
 myList.addRear(new Integer(4));
 myList.addRear(new Integer(6));
 myList.addRear(new Integer(8));
 myList.addBefore(new Integer(5), new Integer(6));
 myList.addAfter(new Integer(7), new Integer(6));
 Iterator iter = myList.elements();
 while (iter.hasNext())
 System.out.println(iter.next());
 System.out.println(''Element before 6 is " +
 myList.elementBefore(new Integer (6)));
 System.out.println("Element after 6 is " +
 myList.elementAfter(new Integer(6)));
 }
}

Output for Listing 13.5

1
2
3
4
5
6
7
8
Element before 6 is 5
Element after 6 is 7

Page 244

Explanation of Listing 13.5

The methods removeAfter and removeBefore are left as exercises for the reader. Let us examine command addAfter .

public void addAfter (Object obj, Object target) {
 Node itemNode = getNode (target);
 if (itemNode == null)
 throw new NoSuchElementException(
 ''addAfter::target does not exist");
 else {
 Node newNode = new Node (obj, itemNode.next);
 itemNode.next = newNode;
 numberElements++;
 if (this.rear == itemNode)
 rear = newNode;
 }
}

Node itemNode associated with target is obtained by invoking the protected (internal) method getNode. Node newNode
is constructed using obj and it is set to point to itemNode.next . The next field of itemNode is linked to newNode . The
field numberElements is increased by one. Finally, if the field rear equals itemNode, then rear is reassigned to newNode .

Finally, we examine command addBefore.

public void addBefore (Object obj, Object target) {
 Node itemNode = getNode (target);
 if (itemNode == null)
 throw new NoSuchElementException(
 "addBefore::target does not exist");
 else {
 Node newNode = new Node (obj, itemNode);
 if (this.front == itemNode)
 this.front = newNode;
 else {
 Node beforeNode = nodeBefore(itemNode);
 beforeNode.next = newNode;
 }
 numberElements++;
 }
}

Node itemNode is again determined using getNode. Node newNode is constructed using obj and is set to point to
itemNode. If front equals itemNode, front is reassigned to newNode . If front does not equal itemNode, beforeNode is
computed using nodeBefore(itemNode). The field next of beforeNode is linked to newNode . Finally, the field
numberElements is increased by one.

TE
AM
FL
Y

Team-Fly®

Page 245

Figure 13.3.
addBefore.

Figure 13.3 depicts the nodes used in the logic associated with addBefore .

13.2.2—
Doubly Linked List

The structure of a doubly linked list is the same as a doubly linked Dequeue (see Figure 13.2). Listing 13.6 presents the
details of class DoublyLinkedList.

Listing 13.6 Class DoublyLinkedList

/** Implements PositionableList with duplicates and links pointing
 * forwards and backwards
*/
package foundations;
import java.util.*;

public class DoublyLinkedList extends DoublyLinkedDequeue
 implements PositionableList {

 // Fields are inherited from DoublyLinkedDequeue

 /** Insert obj after target object in the list
 */
 public void addAfter (Object obj, Object target) {
 Node itemNode = getNode (target);
 if (itemNode == null)
 throw new NoSuchElementException(
 ''addAfter::target does not exist");
 else {
 // Backlink to itemNode and forward link to itemNode.next
 Node newNode = new Node (obj, itemNode.next, itemNode);
 if (itemNode.next != null)
 itemNode.next.before = newNode;
 else
 rear = newNode;
 itemNode.next = newNode;
 numberElements++;
 }
 }

Page 246

 /** Insert obj before target object in the list
 */
 public void addBefore (Object obj, Object target) {
 Node itemNode = getNode(target);
 if (itemNode == null)
 throw new NoSuchElementException(
 ''addBefore::target does not exist");
 else {
 Node beforeNode = itemNode.before;
 // Backlink to beforeNode forward link to itemNode
 Node newNode = new Node (obj, itemNode, beforeNode);
 if (front == itemNode)
 front = newNode;
 else
 beforeNode.next = newNode;
 itemNode.before = newNode;
 numberElements++;
 }
 }

 /** Delete object after target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is last in the list.
 */
 public void removeAfter (Object target) {
 // Exercise
 }

 /** Delete object before target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is first in the list.
 */
 public void removeBefore (Object target) {
 // Exercise
 }

 // Queries

 /** Return object after target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is last in the list.
 */
 public Object elementAfter (Object target) {
 if (!this.contains(target) || getNode(target) == this.rear)
 throw new NoSuchElementException(
 "removeAfter::obj does not exist or is last in list");
 else
 return getNode(target).next.item;
 }

Page 247

 /** Return object before target object in the list
 * Throw NoSuchElementException if target not in the list.
 * Throw NoSuchElementException if target is first in the list.
 */
 public Object elementBefore (Object target) {
 if (!this.contains(target) || getNode(target) == this.front)
 throw new NoSuchElementException(
 ''removeBefore::obj does not exist or is first in list");
 else
 return getNode(target).before.item;
 }

 // Internal methods

 /**
 * For internal use only.
 * This function, available only within this class
 * returns the node associated with value. If value is
 * not present in the list, getNode returns null
 */
 protected Node getNode (Object value) {
 Node node = front;
 Node result = null;
 while (node != null) {
 if (node.item.equals(value)) {
 result = node;
 break;
 }
 node = node.next;
 }
 return result;
 }

 static public void main (String[] args) {
 DoublyLinkedList myList = new DoublyLinkedList();
 myList.addFront(new Integer(3));
 myList.addFront(new Integer(2));
 myList.addFront(new Integer(1));
 myList.addRear(new Integer(4));
 myList.addRear(new Integer(6));
 myList.addRear(new Integer(8));
 myList.addBefore(new Integer(5), new Integer(6));
 myList.addAfter(new Integer(7), new Integer(6));
 Iterator iter = myList.elements();
 while (iter.hasNext())
 System.out.println(iter.next());

Page 248

 System.out.println("Element before 6 is " +
 myList.elementBefore(new Integer(6)));
 System.out.println(''Element after 6 is " +
 myList.elementAfter(new Integer(6)));
 }
}

The output for Listing 13.6 is the same as for Listing 13.5.

Explanation of Listing 13.6

The methods removeAfter and removeBefore are again left as exercises for the reader. As before, we shall dissect
methods addAfter and addBefore . Let us examine command addAfter .

public void addAfter (Object obj, Object target) {
 Node itemNode = getNode(target);
 if (itemNode == null)
 throw new NoSuchElementException(
 "addAfter::target does not exist");
 else {
 // Backlink to itemNode and forward link to itemNode.next
 Node newNode = new Node(obj, itemNode.next, itemNode);
 if (itemNode.next != null)
 itemNode.next.before = newNode;
 else
 rear = newNode;
 itemNode.next = newNode;
 numberElements++;
 }
}

Node itemNode is found using getNode(target) . Node newNode is constructed using the obj so that it is forward linked to
itemNode.next and back linked to itemNode . If itemNode is not at the end of the list, itemNode.next.before is linked to
newNode ; otherwise the field rear is reassigned to newNode . The next field of itemNode is assigned to newNode and the
field numberElements is increased by one.

Finally, we examine command addBefore.

public void addBefore (Object obj, Object target) {
 Node itemNode = getNode(target);
 if (itemNode == null)
 throw new NoSuchElementException(
 "addBefore::target does not exist");

Page 249

 else {
 Node beforeNode = itemNode.before;
 // Backlink to beforeNode forward link to itemNode
 Node newNode = new Node (obj, itemNode, beforeNode);
 if (front == itemNode)
 front = newNode;
 else
 beforeNode.next = newNode;
 itemNode.before = newNode;
 numberElements++;
 }
}

The Node itemNode is computed using getNode(target) . The Node beforeNode is assigned to itemNode.before. The
Node newNode is constructed using target so that it is forward linked to itemNode and back linked to beforeNode. If
itemNode is the first element in the list, front is reassigned to newNode; otherwise beforeNode is linked to newNode. The
before field of itemNode is linked to newNode and the field numberElements is increased by one.

13.3—
Vector List

Class VectorList implements the interface IndexableList . Its skeletal structure is given in Listing 13.7. Recall that an
indexable list allows insertion or removal at a specified index in the list.

Listing 13.7 Skeletal Structure of Class VectorList

/** An implementation of IndexableList
*/
package foundations;
import java.util.*;

public class VectorList implements IndexableList {

 // Fields
 Vector data = new Vector();

 // Commands

 /** Remove all objects from the container if found */
 public void makeEmpty () {
 // Exercise for reader
 }

 /** Add obj at the front */
 public void addFront (Object obj) {
 // Exercise for reader
 }

Page 250

 /** Add obj at the rear */
 public void addRear (Object obj) {
 // Exercise for reader
 }

 /** Remove object from the front if found. */
 public void removeFront () {
 // Exercise for reader
 }

 /** Remove object from the rear if found. */
 public void removeRear () {
 // Exercise for reader
 }

 /** Replace object at index with obj
 * Throws ArrayIndexOutOfBoundsException if index error
 */
 public void insertAt (Object obj, int index) {
 // Exercise for reader
 }

 /** Remove an object at specified index
 * Throws ArrayIndexOutOfBoundsException if index error
 */
 public void removeAt (int index) {
 // Exercise for reader
 }

 // Queries

 /** Return without removing the front object
 * Throws NoSuchElementException if list is empty
 */
 public Object front () {
 // Exercise for reader
 }

 /** Return without removing the rear object
 * Throws NoSuchElementException if list is empty
 */
 public Object rear() {
 // Exercise for reader
 }

 /** Return true if the list contains obj
 */
 public boolean contains (Object obj) {
 // Exercise for reader
 }

Page 251

 /** Return true if the list is empty */
 public boolean isEmpty () {
 // Exercise for reader
 }

 /** Return the number of objects in the list */
 public int size () {
 // Exercise for reader
 }

 /** Return the object at index without removing
 * Throws ArrayIndexOutOfBoundsException if index error
 */
 public Object elementAt (int index) {
 return data.elementAt(index);
 }

 /** Iterator */
 public Iterator elements () {
 return data.iterator();
 }

 static public void main (String[] args) {
 VectorList myVectorList = new VectorList();
 myVectorList.addRear(new Integer(4));
 myVectorList.addRear(new Integer(5));
 myVectorList.addRear(new Integer(6));
 myVectorList.addFront(new Integer(3));
 myVectorList.addFront(new Integer(2));
 myVectorList.addFront(new Integer(1));
 System.out.println (''The element at index 1 = " +
 myVectorList.elementAt(1));
 System.out.println ("The element at index 5 = " +
 myVectorList.elementAt(5));
 myVectorList.insertAt(new Integer(20), 2);
 System.out.println ("The element at index 2 = " +
 myVectorList.elementAt(2));
 myVectorList.removeRear();
 System.out.println ("The element at the rear = " +
 myVectorList.rear());
 myVectorList.removeFront();
 System.out.println ("The element at the front = " +
 myVectorList.front());
 Iterator iter = myVectorList.elements();
 while (iter.hasNext())
 System.out.println (iter.next());
 }
}

Page 252

The implementation of all the methods are left as an exercise for the reader.

Output for Listing 13.7

The element at index 1 = 2
The element at index 5 = 6
The element at index 2 = 20
The element at the rear = 5
The element at the front = 2
2
20
4
5

13.4—
Ordered List

An ordered list implements the interface SearchTable . Its elements are ordered (therefore the need to implement a search
table) and therefore must be of type Comparable . No duplicates are allowed in an OrderedList.

In Java 2 Platform, all wrapper classes are of type Comparable . Class String is also of type Comparable .

Listing 13.8 presents the details of class OrderedList.

Listing 13.8 Class OrderedList

/** Implements SearchTable with singly linked list without duplicates.
*/
package foundations;
import java.util.*;
import java.io.Serializable;

public class OrderedList implements SearchTable {

 // Fields
 protected Node first;
 int numberElements;

 // Commands

 /** Remove all objects from the container if found */
 public void makeEmpty () {
 while (first != null) {
 Node previous = first;
 first = first.next;
 previous = null;
 }
 numberElements = 0;
 }

Page 253

 /** Add obj to the table; must be Comparable */
 public void add (Comparable obj) {
 if (numberElements == 0)
 first = new Node(obj, null);
 else {
 Node current = first;
 Node previous = null;
 if (current.item.compareTo(obj) == 0)
 throw new NoSuchElementException(
 ''add::obj already in list");
 // Search for first node in list that is greater than obj
 while (current != null &&
 current.item.compareTo (obj < 0) {
 previous = current;
 if (current.item.compareTo(obj) == 0)
 throw new NoSuchElementException(
 "add::obj already in list");
 current = current.next;
 }
 Node newNode = new Node(obj, current);
 if (previous != null)
 previous.next = newNode;
 else
 first = newNode;
 }
 numberElements++;
 }

 /** Remove obj from table, if found */
 public void remove (Comparable obj) {
 // Exercise
 }

 // Queries

 /** Return true if the container is empty */
 public boolean isEmpty () {
 return numberElements == 0;
 }

 /** Return the number of objects in the container */
 public int size () {
 return numberElements;
 }

 /** Return true if the table contains obj */
 public boolean contains (Comparable obj) {
 Node current = first;

Page 254

 while (current != null && current.item.compareTo(obj) != 0)
 current = current.next;
 return current != null;
 }

 /** Return obj if in table otherwise returns null
 * useful when obj is a key & returns an Association
 */
 public Comparable get (Comparable obj) {
 Node current = first;
 while (current != null && current.item.compareTo(obj) != 0)
 current = current.next;
 if (current != null)
 return current.item;
 else
 return null;
 }

 /** Return an iterator on all elements */
 public Iterator elements () {
 // Load the objects of the Dequeue into a Vector
 Vector v = new Vector () ;
 Node current = first;
 while (current != null) {
 v.addElement(current.item);
 current = current.next;
 }
 return v.iterator (); // Only valid in Platform 2
 }

 /** Models internal node for OrderedList */
 protected class Node implements Serializable {
 protected Comparable item;
 protected Node next;

 public Node (Comparable value, Node lnk) {
 item = value;
 next = lnk;
 }
 }

 // Internal methods

 /**
 * For internal use only.
 * This function, available only within this class,
 * returns the node associated with value. If value is
 * not present in the list, getNode returns null
 */

TE
AM
FL
Y

Team-Fly®

Page 255

 private Node getNode (Comparable value) {
 Node node = first;
 Node result = null;
 while (node != null) {
 if (node.item.compareTo(value) == 0) {
 result = node;
 break;
 }
 node = node.next;
 }
 return result;
 }

 /**
 * For internal use only.
 * This function, available only within the class,
 * returns the node just before someNode. If someNode is null or
 * the only node present in the list, this function returns null.
 */
 private Node nodeBefore (Node someNode) {
 if (someNode != null && someNode != first) {
 Node previous = first;
 while (previous.next != someNode)
 previous = previous.next;
 return previous;
 }
 else
 return null;
 }

 static public void main (String[] args) {
 OrderedList strList = new OrderedList();
 strList.add(new String(''Erik"));
 strList.add(new String("Adam"));
 strList.add(new String("Charlie"));
 strList.add(new String("Peter"));
 strList.add(new String("Marc"));
 strList.remove(new String("Charlie"));
 Iterator iter = strList.elements();
 while (iter.hasNext())
 System.out.println(iter.next());

 OrderedList intList = new OrderedList();
 intList.add(new Integer(12));
 intList.add(new Integer(10));
 intList.add(new Integer(11));
 intList.add(new Integer(17));
 intList.add(new Integer(13));

Page 256

 intList.remove(new Integer(12));
 iter = intList.elements();
 while (iter.hasNext())
 System.out.println(iter.next());
 }
}

Output for Listing 13.8

Adam
Erik
Marc
Peter
10
11
13
17

13.5—
List Laboratory

A GUI application that provides a test suite for all six list classes is constructed. A screen shot of the laboratory in action
is shown in Figure 13.4.

Figure 13.4.
Screen shot of list laboratory.

Page 257

The ListLabUI class utilizes two internal fields:

// Fields
foundations.List aList; // Qualified reference needed
OrderedList orderedList;

The qualified reference to List is needed since List classes already exist in the standard java.awt and java.util packages.

The user is given the choice of choosing one of eight possible list types:

1. SinglyLinkedDequeue

2. DoublyLinkedDequeue

3. SinglyLinkedList

4. SinglyLinkedListE

5. DoublyLinkedList

6. DoublyLinkedListE

7. VectorList

8. OrderedList

The SinglyLinkedListE and DoublyLinkedListE classes are partially implemented with the remove commands left as
exercises for the reader to implement.

If the user chooses items 1 through 7 (SinglyLinkedDequeue to VectorList), the list is constructed using the appropriate
concrete class type. For example, if the user chooses DoublyLinkedList (as in the screen shot of Figure 13.4), the list
would be set as follows:

list = new DoublyLinkedList();

The principle of polymorphic substitution allows a descendant type to be substituted for an ancestor type.

Some downcasting must be done in order to allow operations specific to a given type to be accepted by the compiler.
This is illustrated with the line of code below (taken from class ListLabUI).

((PositionableList) aList).addAfter(item, value);

The command addAfter is not defined in interface List. The downcast shown above forces the compiler to accept the
usage.

Depending on which list type the user chooses, a different array of command and query buttons are made visible. If the
user clicks the ''Reset" button, all panels are made invisible, each list is made empty, and the system is restored to its
initial state.

Page 258

13.6—
Stack and Queue Revisited

We presented static and dynamic implementations of stack in Chapter 11 (ArrayStack and LinkedStack) and a dynamic
implementation of queue (LinkedQueue).

Having completed our presentation of lists it is useful to briefly revisit the issue of stack and queue implementation.
Both a stack and queue may be implemented by encapsulating an internal Dequeue (or internal PositionableList such as
SinglyLinkedList or DoublyLinkedList).

The external operations of a stack or queue are a subset of the operations available in a list such as Dequeue. For this
reason, we avoid using inheritance as many authors have done in the past because we believe that extension implies
added features, not reduced features.

Listing 13.9 shows the implementation of ListStack using class SinglyLinkedList internally.

Listing 13.9 Class ListStack

/** A Stack implemented with an internal list
*/
package foundations;
import java.util.*;

public class ListStack {

 // Fields
 SinglyLinkedList list = new SinglyLinkedList();

 // Commands

 public void push (Object item) {
 list.addFront(item);
 }

 public void pop () {
 if (isEmpty())
 throw new NoSuchElementException
(''Stack is empty.");
 else
 list.removeFront();
 }

 public void makeEmpty () {
 list.makeEmpty ();
 }

 // Queries

 public Object top () {
 return list.front();
 }

Page 259

 public boolean isEmpty () {
 return list.isEmpty();
 }

 public int size () {
 return list.size();
 }

 static public void main (String[] args) {
 ListStack myStack = new ListStack();
 myStack.push(new Integer(1));
 myStack.push(new Integer(2));
 myStack.push(new Integer(3));
 System.out.println(''myStack.size() = " + myStack.size
());
 myStack.pop();
 System.out.println("myStack.size() = " + myStack.size());
 System.out.println("myStack.top() = " + myStack.top());
 }
}

Output for Listing 13.9

myStack.size() = 3
myStack.size() = 2
myStack.top() = 2

It is left as an exercise for the reader to implement ListQueue using an approach similar to Listing 13.9.

13.7—
Summary

• A list is a useful and widely used container abstraction. Lists come in various flavors so we really have a family of list
abstractions.

• The simplest list allows the addition of objects, removal of objects, and access to objects only at two ends, front and
rear.

• An indexable list extends a simple list by allowing the insertion of objects, removal of objects, and access of objects at
a particular index.

• A positionable list extends a simple list by allowing the addition of objects, removal of objects, and access to objects
before or after a specified object in the list.

• An ordered list extends SearchTable and requires that its elements be comparable. A strict ordering relationship is
maintained among the elements of an ordered list.

• A Dequeue is an implementation of a simple List. Objects may be added, removed, or accessed at the front or the rear
of such a list.

Page 260

• A static implementation of a list requires that the user specify the size of the list in advance and, once specified, the
size cannot be changed. The advantage of such an implementation is efficiency. A dynamic implementation provides
more flexibility, since memory is allocated on demand as more objects are added.

• Because of the common protocol between a linked list and a Dequeue (commands addFront, addRear, removeFront,
and removeRear and queries front and rear), class SinglyLinkedList extends SinglyLinkedDequeue and class
DoublyLinkedList extends DoublyLinkedDequeue.

13.8—
Exercises

1 Implement removeAfter and removeBefore for class SinglyLinkedListE . This partially completed class is located in the
foundations folder in a subdirectory of the ListLab.

2 Implement removeAfter and removeBefore for class DoublyLinkedListE . This partially completed class is located in
the foundations folder in a subdirectory of the ListLab.

3 Implement the complete class ListQueue using class SinglyLinkedList internally. Your queue implementation should
not use class Node explicitly (it is used in implementing SinglyLinkedList) but only the internally defined instance of
SinglyLinkedList .

Write a short test stub in a function main to be included with your class ListQueue .

4 Implement all of the methods of class VectorList that are specified as ''Exercise for reader" in Listing 13.6. The test
stub given in function main should serve as your VectorList test.

5 Implement a static version of a positionable list. Call your class ArrayList. Test your list using function main. Your
new class must be declared to be in package foundations .

6 Implement a static version of an ordered list. Call your class ArrayOrderedList . Test your list using function main.
Your new class must be declared to be in package foundations .

Note : For all the following exercises that require you to add methods to SinglyLinkedList, construct a class
SpecialSinglyLinkedList that extends SinglyLinkedList and is declared to be in package foundations . You will have
access to the protected fields front and rear inherited from SinglyLinkedDequeue.

7 Add a method shallowCopy to class SinglyLinkedList with signature:

SinglyLinkedList shallowCopy();

This method returns a new list that contains the same nodes as the receiver.

Page 261

8 Add a method deepCopy to class SinglyLinkedList with signature:

SinglyLinkedList deepCopy();

This class returns a new list that contains copies of the nodes of the receiver.

9 Design a method for inserting an object into the middle of a SinglyLinkedList with signature:

void insertMiddle (Object obj);

10 Implement a recursive version of the contains query for class SinglyLinkedList . This method (in your class
SpecialSinglyLinkedList) should override the method given in SinglyLinkedList .

11 Add the method addAfterSecondOccurrence to class SinglyLinkedList . The signature of this method is:

public void addAfterSecondOccurrence (Object obj,
 Object target);

This method searches for the second occurrence of the target object and adds obj after this target. If a second occurrence
of target does not exist, an exception must be thrown. Write test code in function main.

12 Add the method addBeforeSecondOccurrence to class SinglyLinkedList . The signature of this method is:

public void addBeforeSecondOccurrence (Object obj,
 Object target);

This method searches for the second occurrence of the target object and adds obj before this target. If a second
occurrence of target does not exist, an exception must be thrown. Write test code in function main.

13 Add the method removeAfterSecondOccurrence to class SinglyLinkedList. The signature of this method is:

public void removeAfterSecondOccurrence (Object obj,
 Object target);

This method searches for the second occurrence of the target object and removes obj after this target. If a second
occurrence of target does not exist, an exception must be thrown. Write test code in function main.

Page 262

14 Add the method removeBeforeSecondOccurrence to class SinglyLinkedList . The signature of this method is:

public void removeBeforeSecondOccurrence (Object obj,
 Object target);

This method searches for the second occurrence of the target object and removes obj before this target. If a second
occurrence of target does not exist, an exception must be thrown. Write test code in function main.

15 Compare the list abstractions presented in this chapter to the list abstractions provided in the standard Java libraries.

Page 263

14—
Trees, Heaps, and Priority Queues

This chapter groups together three important data structures: trees, heaps, and priority queues. Trees are our first
example of a nonlinear structure for containing objects. Although conceptually more complex than linear data structures,
trees offer the opportunity for improved efficiency in operations such as inserting, removing, and searching for
contained objects. Heaps are also nonlinear in structure and contained objects must be organized in agreement with an
order relationship between each node and its descendants. A heap may be efficiently implemented using a binary tree. A
priority queue is a special kind of queue that contains prioritized objects (usually based on a key) in a way that the
objects are removed based on their priority (highest priority first). Priority queues may be implemented using a heap.
There is a nonessential but beneficial relationship among these three data structures; that is why they are grouped
together in this chapter. Additional variations on binary trees are covered in later chapters.

14.1—
Trees

A tree is a nonlinear data structure that derives its name from a similarity between its defining terminology and our
friends in the forest, real trees. A tree data structure is considerably more constrained in its variety than a real tree and is
typically viewed upside down, with its root at the top and leaves on the bottom. A tree is usually accessed from its root,
then down through its branches to the leaves.

A tree may be described as a nonlinear container of nodes. The nodes provide storage for contained objects as well as
references to other nodes for connectivity. Nodes are connected by edges. A simple tree structure is shown in Figure
14.1.

We use the simple tree in Figure 14.1 to illustrate the defining terminology of trees.

• Node A is the root of the tree. It contains the object A (a character) and references to three other nodes: B, C, and D. It
has no parent.

• The degree of node A is 3 (it has three references to other nodes).

• Nodes B, C, and D are the direct descendants or children of node A.

• Node A is the parent of nodes B, C, and D.

• Nodes E and F are siblings (children of the same parent).

• Nodes A, B, and D are internal nodes since they have at least one child.

Page 264

Figure 14.1.
A simple tree structure.

• Nodes E, F, C, G, H, and J are leaf (or external) nodes since they have no children. The degree of a leaf node is 0.

• The level (or depth) of the root node is 0; node E is at level 2. The pathLength (number of edges traversed from the
root) to a node is equal to its depth or level.

• The height of the tree is 2 (also the maximum level or depth of any node).

In general, the commands and queries required of a tree include those in interface Container plus methods for adding
and removing objects, iterating over all contained objects, and testing/returning contained objects. There are many
variations on kinds of trees with significant conceptual differences in the meaning of add, remove, iterate and other
commands/queries. Thus we defer creation of a tree abstract data type to discussions of specific kinds of trees.

14.1.1—
BinaryTree Abstract Data Type

Our first specialization of a tree is one that constrains the degree of any node in the tree to be no more than two,
producing a BinaryTree abstraction. More precisely, we define a binary tree as:

• an abstract data type

• a tree whose nodes have degree equal to 0, 1, or 2

A BinaryTree is defined recursively by:

• null is a BinaryTree (an empty tree).

• A node is a BinaryTree with exactly two children (left and right) that are binary trees.

• An external (leaf) node has 2 null offspring.

• An internal node has 1 or 2 non-null offspring.

• Nothing else is a BinaryTree.

The recursive definition should make it clear that the children of any node in a tree are also trees. In terms of the overall
structure of the tree, we may characterize these children (or offspring) as subtrees. Thus a binary tree is a tree whose
nodes

TE
AM
FL
Y

Team-Fly®

Page 265

Figure 14.2.
A simple binary tree structure.

have a left subtree and a right subtree, either of which may be null. An example binary tree is shown in Figure
14.2.

As with other containers, a tree or binary tree may have a structure with order based on insertion/removal history,
insertion/removal rules, or on some ordering relationship of its contained objects. In this section we focus on the
conceptual properties shared by most, if not all, binary trees and defer specialization of binary trees to later sections and
chapters.

Listing 14.1 repeats the interface for BinaryTree presented in Chapter 10. It shows the addition of five queries that are
considered to be generally useful for binary trees. Three of these return iterators over the elements in the binary tree; the
other two return the maximum level and average path length for the binary tree.

Listing 14.1 Interface BinaryTree

/** Interface BinaryTree
* Contained objects must override equals() from Object
*/
package foundations;
import java.util.*;

public interface BinaryTree extends Container {

 // Queries

 /** Return an in-order iterator on elements in the tree
 */
 public Iterator traverseInorder ();

 /** return a preorder iterator on elements in the tree
 */
 public Iterator traversePreorder ();

Page 266

 /** Return a postorder iterator on elements in the tree
 */
 public Iterator traversePostorder ();

 /** return the maximum level in the tree, root is at level 0
 */
 public int maxLevel ();

 /** Return average path length for the tree
 */
 public double avgPathLength ();
}

14.1.1.1—
Traversal of a Binary Tree

In traversing the elements of a binary tree we typically want to visit each node exactly one time (there are variations on
this, as we will see in our discussion of expression trees). The meaning of ''visit" is considered to be independent of the
traversal process as it is for iteration. In other words, the three traversal queries in Listing 14.1 return an Iterator that
allows the user to get a reference to the next element and visit it as desired.

Traversal of the nodes in a binary tree is easily achieved using double recursion: one recursive call to the left subtree and
one recursive call to the right subtree. The recursion sentinel is when a node is null. The visit operation may occur in
three places in the recursion, leading to the three traversal queries. In pseudocode we present the three traversal
algorithms with results when applied to the binary tree in Figure 14.2. For the example results, we interpret "visit" to
mean "display the contained object."

In-Order Traversal Algorithm – In-Order Visit (between Recursive Calls)

traverseInorder(left child)
visit (current node)
traverseInorder(right child)

When applied to the binary tree in Figure 14.2, we get:

D B G E A C H F J

Postorder Traversal Algorithm – Postorder Visit (after the Recursive Calls)

traversePostorder(left child)
traversePostorder(right child)
visit (current node)

Page 267

When applied to the binary tree in Figure 14.2, we get:

D G E B H J F C A

Preorder Traversal Algorithm – Preorder Visit (before the Recursive Calls)

visit (current node)
traversePreorder(left child)
traversePreorder(right child)

When applied to the binary tree in Figure 14.2, we get:

A B D E G C F H J

14.1.1.2—
Mapping the Traversals into an Iterator

We now consider implementation options to satisfy the desired behavior that the traversal queries return iterators, which
allows the user to define ''visit." We find it convenient to use a linear container whose elements are in the order implied
by a preorder, in-order, or postorder traversal. The next element is then returned from the next index starting with the
first element in the linear container. The supporting linear container may be a list or a stack. For purposes of illustration
we will use an instance of java.util.Vector (a kind of list) for the linear container.

The key method in using a linear container for traversal of a binary tree is a command for building the container – for
example, recursively traversing the tree and inserting items into the container so that their order represents the desired
traversal order. We currently have three versions of this process using preorder, in-order, and postorder traversal. Here
we have an opportunity to develop a solution based on good object -oriented design principles. Figure 14.3 shows a class
diagram for a solution using java.util.Vector . The new classes are part of the foundations package.

Class TreeIterator is an abstract class that implements interface Iterator. It contains an instance of java.util.Vector as the
linear storage for traversed elements of the binary tree. Implementers of the BinaryTree interface may choose to use
TreeIterator and its subclasses for implementing the three traversal methods. The three subclasses shown for
TreeIterator need only implement the key method buildVector , which is abstract in parent class TreeIterator . The details
of buildVector in each subclass will follow the traversal algorithms for in-order, preorder, and postorder as given above
for adding elements to the vector v. The promised implementations in interface Iterator are all implemented in abstract
class TreeIterator and useable by subclass instances, unchanged.

Class SearchTreeNode shown in Figure 14.3 represents tree nodes with Comparable contents, plus references to left and
right instances of SearchTreeNode . In the most general sense a BinaryTree does not require that its nodes contain
Comparable objects; however, all the binary tree application classes in this book are compatible with or do require
nodes with Comparable contents. For that reason we implement the TreeIterator classes using instances of
SearchTreeNode .

Page 268

Figure 14.3.
Object-Oriented design of classes for traversal of binary trees.

Listing 14.2 shows details for classes TreeIterator, TreeInorderIterator, and SearchTreeNode . Other TreeIterator
subclasses implement the appropriate buildVector algorithm. The tree iterator classes and SearchTreeNode have package
visibility with a public interface.

Listing 14.2 Details of Classes TreeIterator, TreeInorderIterator, and SearchTreeNode

** Abstract Iterator for traversal of binary search tree
* Has package visibility
*/
package foundations;
import java.util.*;

abstract class TreeIterator implements Iterator {

 // Fields

 protected Vector v;
 protected int index;
 protected int size;

 // Initialize by building Vector v with elements in desired order
 public TreeIterator (SearchTreeNode root) {
 v = new Vector();

Page 269

 buildVector(root);
 v.trimToSize();
 index = 0;
 size = v.size();
 }

 // Commands

 public void remove () {
 // not used - null implementation
 }

 // Queries

 // Return true if last element has not been visited.
 public boolean hasNext () {
 return index < size;
 }

 // Return a reference to the next object.
 public Object next () {
 Object obj = v.elementAt(index);
 index++;
 return obj;
 }

 // Key method - subclass responsibility

 protected abstract void buildVector (SearchTreeNode node);

 protected void finalize () {
 v.removeAllElements(); // prep for garbage collection
 }
}

//---
/** Iterator for in-order traversal of binary search tree
*/
package foundations;
import java.util.*;

class TreeInorderIterator extends TreeIterator { // package visibility

 // Constructors

 public TreeInorderIterator (SearchTreeNode root) {
 super(root);
 }

Page 270

 // Internal command - key method
 // Build Vector v while doing in-order traversal of tree.
 protected void buildVector (SearchTreeNode node) {
 if (node != null) {
 buildVector(node.left);
 v.addElement(node.contents);
 buildVector(node.right);
 }
 }
}

//--
/** Node for binary search tree
*/
package foundations;
import java.util.*;
import java.io.Serializable;

class SearchTreeNode implements Serializable { // package visibility

 // Fields

 Comparable contents;
 SearchTreeNode left;
 SearchTreeNode right;

 // Constructors

 SearchTreeNode (Comparable obj) {
 contents = obj;
 left = null;
 right = null;
 }

 // Queries

 public String toString () {
 return contents.toString();
 }

 boolean isInternal () {
 return (left != null) || (right != null);
 }
}

Page 271

14.1.1.3—
Average Path Length for Binary Trees

An important quantitative measure of the complexity of a binary tree is its average path length. It provides a measure of
the average depth of all nodes in the tree. This may be compared with the number of nodes in the tree and related to time
complexity in using the tree. Interface BinaryTree includes a query for returning the average path length specified by the
signature public double avgPathLength().

We define average path length, APL[n], for a binary tree with n nodes to
be

where TPL[n] is the total path length of all nodes in the tree

where d [i] = depth of node i.

This formula is always true and is the best we can do without knowing the actual structure of a particular tree. In order to
acquire a better understanding of the significance of average path length we may look at several special binary trees. We
define two special cases: (1) a perfectly balanced binary tree (PBBT) and (2) a complete or optimally balanced binary
tree.

A perfectly balanced binary tree may be defined as follows:

• All leaf nodes are at the same level.

• Required: height = log2 (n + 1) - 1; conversely: n = 2(height+1) - 1.

• Form of the tree is completely specified by either height or n.

Figure 14.4 shows an example of a perfectly balanced binary tree.

In calculating the APL for a PBBT we may take advantage of the required relationship (given by the second bullet
above) between the height of the tree and

Figure 14.4.
A perfectly balanced binary tree.

Page 272

Table 14.1 APL for Small PBBT Sizes

n Height APL calculation details APL:

 1 0 (0 * 1) / 1 = 0 0

 3 1 (0 * 1 + 1 * 2) /3 = 2/3 2/3

 7 2 (0 * 1 + 1 * 2 + 2 * 4) / 7 = 10/7 1 3/7

15 3 (0 * 1 + 1 * 2 + 2 * 4 + 3 * 8)/15 = 34/15 2 4/15

31 4 (0 * 1 + 1 * 2 + 2 * 4 + 3 * 8 + 4 * 16)/31= 98 31 3 5/31

the number of nodes. Furthermore, every level in the tree is full (containing the maximum number of nodes for that
level).

For level l the number of nodes in a PBBT is given by:

We now have a parameterized result for computing the APL of a PBBT of size n. We gain additional insights about the
average path length of a perfectly balanced binary tree by calculating the result for the first few smallest trees. Table
14.1 shows the result for PBBT sizes of n from 1 to 31 (heights from 0 to 4).

The resulting APL in fraction form given in Table 14.1 shows a distinct pattern for the result with increasing values of n.
We find that the parametric values a, b, and c are related to tree parameters in the following way (for height > 0):

So an equivalent expression for the APL of a perfectly balanced binary tree is:

In the limit as the tree gets large, n grows exponentially and height grows linearly, so the fraction term approaches zero.
For example, if we have a tree with a height of ten, n equals 2,047. The fraction part is 0.00489. When compared with
the integral part of the APL, a = 9, the fractional part is only about 0.05 percent of the total. As a general guideline we
make the following approximation for the APL of a PBBT:

Page 273

Figure 14.5.
A complete binary tree.

A complete binary tree may be defined as follows:

• It is a perfectly balanced binary tree whose maximum level may not be full.

• All leaf nodes are at depth of height or height - 1.

• Any node that has a right descendant also has a left descendant.

A complete binary tree is shown in Figure 14.5 as a modification to the PBBT in Figure 14.4. Visually, the nodes at the
maximum level are complete in a left-to-right sense. This condition is stated above (last bullet) as the requirement that
any node with a right descendant must have a left descendant also.

An optimally balanced binary tree may be defined as follows:

• It is a perfectly balanced binary tree whose maximum level is not full.

• All leaf nodes are at depth of height or height – 1.

• There are no constraints on the ordering of nodes at the maximum
level.

An optimally balanced binary tree is shown in Figure 14.6 as a modification to the PBBT in Figure 14.4.

Notice how the optimally balanced binary tree differs from the complete binary tree shown in Figure 14.5 only in the
ordering of nodes at the maximum level. From the standpoint of average path length, a complete binary tree with n
nodes is no different than an optimally balanced binary tree that also has n nodes. It is left as an exercise to find a
formula for computing the exact APL for both the complete binary tree and optimally balanced binary trees of size n
nodes.

14.1.2—
Binary Expression Trees

A binary expression tree is a special binary tree that represents binary expressions. We already have experience with
binary expressions from Chapter 12 where

Page 274

Figure 14.6.
An optimally balanced binary tree.

we use a stack coupled with complex precedence logic to convert from infix to postfix form and then evaluate the
postfix expression using another stack.

Using the symbols that are part of a binary expression (without parentheses) we may build an expression tree that
represents all three forms (prefix, infix, and postfix) of the expression. The expression tree is most easily built from the
postfix expression, again using a stack for intermediate storage. Figure 14.7 shows a simple binary expression tree
representing the infix expression, (a + b)∗c - d∗e.

A preorder traversal of the tree gives the prefix form of the expression. A postorder traversal gives the postfix form. An
in-order traversal gives the in-order form but without parentheses, so forced precedence is lost. We present a modified
version of an Euler traversal that gives us the correct infix form of the expression. It is based on visiting each node three
times. The node is visited in preorder, in-order, and postorder during a single traversal.

Modified Euler Traversal Algorithm – for Generating the Infix Form of the Expression

If (current node is internal and not the root)
 visit (' (') // prepend open parenthesis to internal node
traverseInorder(left child)
visit (current node){ // append character in the node
traverseInorder(right child)
If (current node is internal and not the root)
 visit (')') // append close parenthesis to internal node

When applied to the binary tree in Figure 14.7, we get:

Infix: ((a + b) * c) - (d * e)

Although it has unnecessary parentheses, the result is correct. The corresponding results of preorder and postorder
traversals of the expression tree in

TE
AM
FL
Y

Team-Fly®

Page 275

Figure 14.7.
An expression binary tree representing (a + b)∗c – d∗e.

Figure 14.7 produce the following expressions:

Prefix: - * + a b c * d e

Postfix: a b + c * d e * -

14.1.2.1—
Design of a Class for Representing Binary Expression Trees

We design a class called ExpressionBinaryTree that has the behavior listed in Table 14.2. It has two constructors, three
commands, and six queries. It represents a kind of binary tree.

Based on the desired public interface for class ExpressionBinaryTree, we next decide where to place it in our Container
hierarchy. It is a kind of binary tree, yet it has almost nothing in common with the general concept of a binary tree
presented by interface BinaryTree . An expression tree is typically used only to represent and return infix, prefix, and
postfix strings for its binary expression. Traversals of an expression tree attach a predetermined meaning to ''visit." Visit
means to append a character to a string. This is simpler and more constrained than the traversals in BinaryTree that
returned iterators. Further, there is no need for an expression tree to be concerned with average path length or even
maximum level. Thus none of the queries in BinaryTree are applicable to the expression tree class. However, class
ExpressionBinaryTree is still a container and does implement the commands and queries in interface Container . It also
takes advantage of the TreeIterator hierarchy described in Section 14.1.1.2 and shown in Figure 14.3.

Instances of the ExpressionBinaryTree class may accept as input either an infix string (by constructor or command) or a
postfix string (by command). It then builds the expression tree from the postfix string. This may require that an infix
string be converted to an equivalent postfix string. The FunctionEvaluation class developed in Chapter 12 provides this
capability and is to be used by class ExpressionBinaryTree. Figure 14.8 shows a class diagram for class
ExpressionBinaryTree and how it fits within the foundations package.

Page 276

Table 14.2 Public Interface to Class ExpressionBinaryTree

Constructors

public ExpressionBinaryTree() Create an empty expression tree

public ExpressionBinaryTree(String infix) Create an expression tree from an infix string

Commands

public void setInfixString(String infix) Rebuild the tree for the specified infix string

public void setPostfixString(String postfix) Rebuild the tree for the specified postfix string

public void makeEmpty() Make the expression tree empty

Queries

public SearchTreeNode root() Return a reference to the root node

public boolean isEmpty() Return true if tree is empty

public int size() Return the number of nodes in the tree

public String traverseInorder() Return the infix expression

public String traversePreorder() Return the prefix expression

public String traversePostorder() Return the postfix expression

Figure 14.8.
Object-oriented design – class diagram for ExpressionBinaryTree .

Page 277

We use the new supporting class called SearchTreeNode with the significant feature that it contains a Comparable
object and has two self-references representing its left and right subtrees (not shown in the diagram). Our expression tree
contains instances of SearchTreeNode . Nodes in the expression tree will contain instances of Character . Although class
Character implements Comparable , the comparable feature is not used in the logic for building an expression tree. Only
a test for equality is required. Also not shown in Figure 14.8 is a using relationship from class ExpressionBinaryTree to
class FunctionEvaluation for its infix-to-postfix conversion. Class ExpressionBinaryTree has three private internal
methods (isOperator, isOperand , and buildExpressionTree) that support its public interface. Notice that the
TreeEulerIterator needs a persistent reference to the root of the tree. This is used as shown in the modified Euler
algorithm given earlier.

14.1.2.2—
Implementing Class ExpressionBinaryTree

Three private fields represent the internal state of an expression tree: postfixString, root, and size. An instance may be
created without initialization or from an infix expression string. Commands allow the instance to be modified by sending
in a new infix or postfix expression.

Initialization of an instance of ExpressionBinaryTree is accomplished by building an expression tree from a postfix
expression given by postfixString. The algorithm for the private command buildExpressionTree uses a stack of nodes to
build the tree.

Algorithm for buildExpressionTree()

nodeStack = new LinkedStack();
for (ch = next character in postfixString) {
 node = new SearchTreeNode(new Character(ch));
 if (ch == operand)
 nodeStack.push(node);
 else { // ch is an operator
 node.setRight(nodeStack.top());
 nodeStack.pop();
 node.setLeft(nodeStack.top());
 nodeStack.pop();
 nodeStack.push(node);
 }
}
root = nodeStack.top();
nodeStack = null; // set for gc

Logic for buildExpressionTree is as follows. We iterate from left to right over the characters in postfixString. Each
character in postfixString is assigned to ch.

Page 278

Character ch is either an operand or an operator as verified by supporting internal queries isOperand() and isOperator() .
Operands are encapsulated in instances of SearchTreeNode (nodes) and pushed onto the nodeStack . Left and right
subtrees of operand nodes are null. Operators are encapsulated in nodes with right and left subtrees set sequentially to
the top two nodes popped from nodeStack. The operator node is then pushed back onto nodeStack . This algorithm
requires that postfixString be a valid postfix expression with no blank spaces. Successful completion of the algorithm
leaves only a reference to the root node of a valid expression tree on nodeStack . This node initializes the root field. A
simple example follows.

Consider the postfix expression:

ab+c∗

The following steps are completed by algorithm BuildExpressionTree.

1. Read symbol a; create a new node with contents equal to character 'a'.

2. Push node containing 'a' onto nodeStack .

3. Read symbol b; create a new node with contents equal to character 'b'.

4. Push node containing 'b' onto nodeStack .

5. Read symbol +; create a new node with contents equal to character '+'.

6. Get topnode with 'b' from stack and make it the right child of node.

7. Pop topnode with 'b' from stack.

8. Get topnode with 'a' from stack and make it the left child of node.

9. Pop topnode with 'a' from stack.

10. Push node onto nodeStack.

11. Read symbol c; create a new node with contents equal to character 'c'.

12. Push node containing ' c' onto nodeStack .

13. Read symbol *; create a new node with contents equal to character '*'.

14. Get topnode with 'c' from stack and make it the right child of node.

15. Pop topnode with 'c' from stack.

16. Get topnode with '+' from stack and make it the left child of node.

17. Pop topnode with '+' from stack.

18. Push node onto nodeStack.

The nodeStack is shown in Figure 14.9 for completion of selected steps in the example.

Listing 14.3 shows a partial implementation for class ExpressionBinaryTree. Details for commands setPostfixString,
buildExpressionTree and queries traversePreorder, traversePostOrder, isOperand, isOperator are left as an exercise for
the reader.

Page 279

Figure 14.9.
The steps in buildExpressionTree for postfix string ab + c*.

Listing 14.3 Class BinaryExpressionTree

/** class ExpressionBinaryTree
* uses a binary tree to represent binary expressions
* does not implement BinaryTree - all iterators return String
/
package foundations;
import java.util.*;

public class ExpressionBinaryTree implements Container {

 // Fields

 private SearchTreeNode root = null;
 private int size = 0;
 private String postfixString;

 // Constructors

 /** Create an empty expression tree
 */
 public ExpressionBinaryTree () {
 }

 /** Create and initialize an expression tree on infix
 */
 public ExpressionBinaryTree (String infix) {
 postfixString = (new FunctionEvaluation(infix)).postfix();
 buildExpressionTree();
 }

 // Commands

 /** Set a new value for infix
 * updates postfixString and rebuilds expression tree
 */
 public void setInfixString (String infix) {
 postfixString = (new FunctionEvaluation(infix)).postfix();
 buildExpressionTree();
 }

Page 280

 /** Set a new value for postfixString
 */
 public void setPostfixString (String postfix) {
 // remove blanks then build expression tree
 // left as an exercise
 }

 /** Remove all objects from the container if found
 */
 public void makeEmpty () {
 root = null;
 }

 // Queries

 /** Return a reference to the root
 */
 public SearchTreeNode root () {
 return root;
 }

 /** Return true if the container is empty
 */
 public boolean isEmpty () {
 return root == null;
 }

 /** Return the number of objects in the container
 * postfixString has been trimmed
 */
 public int size () {
 return size;
 }

 /** Return the infix string on elements in the tree
 */
 public String traverseInorder () {
 String str = ''";
 for (Iterator i = new TreeEulerIterator(root); i.hasNext();)
 str = str + ((Character)i.next()).charValue();
 return str;
 }

 /** return the prefix string on elements in the tree
 */
 public String traversePreorder () {
 // left as an exercise
 }

Page 281

 /** Return the postfix on elements in the tree
 */
 public String traversePostorder () {
 //left as an exercise
 }

 // Internal methods

 /** Build an expression tree from postfixString
 * - use a Stack of SearchTreeNode
 * throw NoSuchElementException for caught Stack error
 */
 private void buildExpressionTree () {
 // left as an exercise
 }

 private boolean isOperand (char ch) {
 // left as an exercise
 }

 private boolean isOperator (char ch) {
 //left as an exercise
 }
}

Discussion of Listing 14.3

Private command buildExpressionTree is clearly a key method that has primary responsibility for initializing (with help
from supporting private queries isOperand and isOperator) the internal state of an instance of ExpressionBinaryTree.
Public methods for creation or modification of an instance, constructor ExpressionBinaryTree(String infix) plus
commands setInfixString(String infix) and setPostfixString(String postfix) must invoke buildExpressionTree . Placing
state modification instructions in a small number of key methods is a good design choice for object-oriented software.

14.1.3—
Binary Expression Tree Laboratory

We present a binary expression tree laboratory that uses methods in class ExpressionBinaryTree. The laboratory also
uses a utility class named DrawTree from package foundations . Class DrawTree , discussed in Chapter 15, provides
methods for displaying graphically a binary tree in a panel. Figure 14.10 shows a UML class diagram for the laboratory.
ExprTreeApp is the main application class and ExprTreeUI is the user interface class.

A screen shot of the expression tree laboratory is shown in Figure 14.11 after clicking the ''Construct" button and
entering the infix string expression

Page 282

Figure 14.10.
UML diagram for binary expression tree laboratory.

Figure 14.11.
Expression tree laboratory.

Page 283

(a+b) / (c-d) *e-f*g/h+j

After pressing ''Enter," the laboratory automatically displays the prefix, postfix, and traversed infix forms of the
expression, plus the tree diagram. The user may also enter a valid postfix expression and observe all the forms. The
prefix expression text field is grayed out to prevent input since the laboratory does not support prefix-to-postfix
conversion.

14.2—
Heaps

14.2.1—
The Heap Abstract Data Type

A heap is a nonlinear data structure that is easily implemented as a complete binary tree whose nodes contain elements
satisfying two additional properties:

1. The contents of a node in a heap must implement interface Comparable .

2. A heap satisfies the following ordering property: For every node in the heap, the contents of the node must be less
than or equal to the contents of all its descendants.

The contained objects may be instances of Association, where the Comparable and ordering properties must be satisfied
for the keys. We defined a complete binary tree in Section 14.1.1.3 with an example in Figure 14.5. Figure 14.12 shows
an example of a heap with simple characters as the contained objects. The heap allows duplicates. The exact location of
elements in a heap depends on the history of insertions and removals constrained by the ordering property. The root is
called the top of the heap.

As an alternative to the binary tree we may also represent a heap as an array. Using the numbering scheme for nodes as
shown in Figure 14.12 (left to right, down the tree), we may map the nodes into sequential indices of an array as

Figure 14.12.
A heap as a binary tree.

Page 284

Figure 14.13.
A heap as an array.

shown in Figure 14.13. The ordering property of the heap is easily verified by visual inspection of the binary tree
representation, but it is quite difficult to discern from the array representation. The array representation is, however,
convenient for iteration over elements in a heap.

Using integer arithmetic, the following relationships exist among indices for a node and its offspring or parent in the
array representation for a heap.

left child of array[i] is array[2i + 1]

right child of array[i] is array[2(i +1)]

parent of array[i] is array[(i - 1)/2]

These conceptual views of a heap provide two possibilities for implementation of a heap data structure: a binary tree and
a linear list (or array). But first we continue our discussion of the behavior for a heap data structure by revisiting the
interface for the Heap abstract data type presented in Chapter 10 and repeated in Listing 14.4.

Listing 14.4 Interface Heap

/** Interface Heap - contained objects must implement Comparable
* root contains minimum value
*/
package foundations;
import java.util.*;

public interface Heap extends Container {

 // Commands

 /** Add obj to the heap, maintaining a heap
 */
 public void add (Comparable obj);

 /** Remove top obj from the heap, maintaining a heap
 * throw NoSuchElementException if empty
 */
 public void removeTop ();

TE
AM
FL
Y

Team-Fly®

Page 285

 /** Sort the elements in the heap, maintaining a heap
 * use level-order heapsort algorithm
 */
 public void sort ();
 // Queries

 /** Return contents of the root - top of the heap
 * throw NoSuchElementException if heap is empty
 */
 public Comparable top ();

 /** Return a level-order iterator
 */
 public Iterator traverseLevels ();
}

Discussion of Listing 14.4

Although our definition for the Heap data structure was given in terms of a binary tree, the heap does not need any of the
queries in the BinaryTree interface. Interface Heap extends Container , not BinaryTree. Like the ExpressionBinaryTree,
Heap is a special kind of binary tree with its own special behavior and at least two options for its implementation.

In addition to methods inherited from Container , the Heap interface adds three new commands (add, removeTop, sort)
and two new queries (top, traverseLevels).

As is true for most containers, we need commands that allow us to add or remove objects from a heap. The add
command takes a single parameter of type Comparable and adds it to the heap. The object is added to the heap at the
next available location. The next available location is either

1. the next empty position at the maximum depth in the tree (e.g., as right offspring of node F, node 4, in Figure 14.12)
or

2. the left offspring of the leftmost node in the tree at maximum depth (i.e., when all positions at maximum depth are full
we go one level deeper).

As a side effect, adding a new node may break the ordering property of the heap. We must check for this condition and
correct it in the algorithm for add.

The only object that may be removed from a heap is the top object. In essence we are removing the root node of a binary
tree, a step that is guaranteed to break the heap. The algorithm for removeTop must include steps for rebuilding the heap
after removal of the top object.

A third command allows us to sort the objects in a heap in ascending order based on the node-numbering scheme
introduced in Figure 14.12. If we are using an array representation for the heap, then sort rearranges the elements in
ascending order in the array. A sorted heap is still a heap .

We add a query to access the top object on the heap without removing it and a new kind of traversal characterized as a
''level-order" traversal. Its behavior may

Page 286

be described as a raster-like traversal of the binary tree. It is also a traversal of the tree nodes that follows the numbering
sequence in Figure 14.12, or a sequential traversal of the objects in the array representation from index = 0 to size
- 1. If the heap is sorted, a level -order traversal visits the nodes in ascending order of the contained objects or keys.

14.2.2—
Implementation of Interface Heap

In this section we examine details of selected algorithms for implementing the behavior of a heap and look at two
specific representations of the heap data structure. The first representation uses a custom-built binary tree to store the
heap. The second representation uses an instance of java.util.Vector to store the heap elements.

A general algorithm for the add command is shown below. It adds a new object to the next available position in the heap
and then checks for and corrects violations of the ordering property. Details of the algorithm are implemented differently
depending on the chosen representation for the heap data structure (referred to as data) in the algorithm.

Algorithm for Heap Command add(Comparable Obj)

// get location and add new obj to heap
location = getLocation() // another algorithm
node = new HeapNode(obj) // subclass of SearchTreeNode
data.add(node) at location
size++

// check if heap is broken and repair
child = node
parent = child.parent
// while child < parent and child !root - swap parent and child
while (child != root
 && parent.contents > child.contents) {
 swap(child, parent)
 // move up the tree
 child = parent
 parent = child.parent
}

The part of the algorithm that repairs the heap starts at the bottom of the heap (where a new node was added) and works
its way up the tree. It uses a ''restore up" approach to repairing the broken heap.

As an example of how the add command works, consider the heap in Figure 14.12 if we add B. The first step is shown
in Figure 14.14 after B (position 10) is added as the right offspring of F (position 4). The heap-ordering property is
broken because B is smaller than its parent F. The algorithm detects this and swaps B (to position 4) with F (to position
10). In a second pass through the while loop,

Page 287

Figure 14.14.
Adding a node to a heap: Node B is added; heap is broken.

B (position 4) is smaller than its new parent D (position 1). We swap B (to position 1) with D (to position 4). The last
pass through the while loop detects that B is larger than its parent, A, and the algorithm is complete. The final result is
shown in Figure 14.15

The removeTop command has the goal of removing the root node of the heap, which would leave a severely broken data
structure if it were simply cut from the tree. The root node cannot be missing from a binary tree. Further, we know that
the size of the heap will be one less than it was and that we must preserve the completeness property of the heap as a
binary tree. Given these constraints, a solution that avoids most of the difficulties is to replace the root node with the last
node in the tree. Implementing classes may find it convenient to maintain a reference to the last node.

Replacing the root with the last node eliminates the problem of a missing root, but probably breaks the ordering property
of the heap. In most cases, the last node in the heap has a value that is larger than one or more of its ancestors. Moving it
to the root would then violate the ordering property. An algorithm for removeTop must check for and restore breaks in
the ordering property from the root down

Figure 14.15.
Adding a node to a heap: Node B is added; heap property is restored.

Page 288

to the bottom of the tree. It thus uses a ''restore down" approach to repairing the broken heap.

Algorithm for Heap Command removeTop()

// locate newLast node based on current last node
// replace root with last
newLast = getLast() // another algorithm
root.contents = last.contents
size-
last = newLast

// for size > 1, check if heap broken and repair
parent = root
// get smaller of children as next
next = parent.left
right = parent.right
if (right != null && next.contents > right.contents)
 next = right
while (next != null && next.contents < parent.contents) {
 swap(next, parent)
 // move down the tree to smaller of children
 parent = next
 next = parent.left
 right = parent.right
 if (right != null && next.contents > right.contents)
 next = right
}

The parameter next in the algorithm is always the left or right offspring of node parent with the smaller contents. The
contents field of parent (if larger) is swapped with the contents field of next . This process continues down the tree until
the parent contents is equal to or smaller than the smaller of the contents of its offspring or until the bottom of the tree is
reached.

If we remove the top element from the heap in Figure 14.15, the result of removing the root and replacing it with the last
node is as shown in Figure 14.16. Node F (former position 10) is now in position 0, causing a break in the ordering
property. Our first iteration through the while loop of the removeTop algorithm sets next to node B (the smaller of F's
offspring. It then swaps F (to position 1, step 1) with B (to position 0, step 2). The next iteration of the while loop sets
next to node D (position 3) because the default is the left offspring. It then swaps F (to position 3, step 3) with D (to
position 1, step 4). This is the last iteration since F (position 3) is smaller than either of its offspring, W (position 7) and
J (position 8).

The resulting heap is shown in Figure 14.17 after completion of the removeTop algorithm.

Details for getLocation in the add algorithm and for getLast in the removeTop algorithm are strongly dependent on the
choice of data structure representation

Page 290

Figure 14.18.
UML diagram for binary tree implementation of Heap.

which the new node will be a child. Starting with the current last node there are two possibilities. The first possibility is
that the next location is at the same level as last and the next position to its right. The second possibility is that last is the
node that fills its level (maxLevel), causing the next position to be the leftmost position at maxLevel + 1.

An algorithm for finding the parent for the next available position that handles both cases is given below. The add
command then makes the new node the left offspring of parent (if parent is external) or the right offspring of parent (if
parent is internal).

Algorithm for Private Query getParent()

// return the parent for new node to add
node = last
while (node != root && node not LeftChild)
 node = node.parent
if (node != root)
 if (node.parent.right == null)
 return node.parent
 else
 node = node.parent.right
while (node.left != null)
 node = node.left
return node

Figure 14.19 illustrates how parent is found for Case 1. Case 1 occurs when the new node is added at the current
maxLevel. The getParent algorithm returns node 5 as the parent for the next node being added.

Page 291

Figure 14.19.
Details for getParent, Case 1 – next added node is at maxLevel.

Discussion of Case 1 Example for getParent

Initially we have node = last = node 10. The first while loop replaces node with its parent until node is either the root or
a left child. In this example we exit the while loop (after two steps) with node = node 1 (it is the left child of node 0). In
the compound if statement (node is not the root) we go to the else clause of the if-else (since the right offspring of node's
parent is not null). Statement node = node.parent.right sets node = node 2 (step3). The final while loop finds the leftmost
child of node 0 (step4), which is node 5. Node 5 is returned.

Figure 14.20 illustrates how parent is found for Case 2. Case 2 occurs when the new node is added at the current
maxLevel + 1. The getParent algorithm returns node 3 as the parent for the next node being added.

Discussion of Case 2 Example for getParent

Initially we have node = last = node 6. The first while loop replaces node with its parent until node is either the root or a
left child. In this example we exit the while loop (after two steps) with node = node 0 (it is the root). We skip the
compound if statement (node is the root). The final while loop finds the leftmost child of node 0 (after two steps), which
is node 3. Node 3 is returned.

Figure 14.20.
Details for getParent, Case 2 – next added node is at maxLevel + 1.

Page 292

An important part of the removeTop command is updating the reference to last before moving the current last node to
the root position. Starting from the current last node there are again two possibilities. The first possibility is that the new
last location is at the same level as last and the previous position is to its left. The second possibility is that last is the
only node at its level (maxLevel), causing the previous position to be the rightmost position at maxLevel - 1.

An algorithm for finding the previous position from last that handles both cases is given below. The removeTop
command then reassigns last to the newLast position after it replaces root with the old last. It then restores the heap
property using restoreDown .

Algorithm for Private Query getNewLast()

node = last
while (node isLeftChild)
 node = node.parent
if (node != root)
 node = node.parent.left
while (node.right != null)
 node = node.right
return node

Figure 14.21 illustrates how newLast is found for Case 1. Case 1 occurs when the new last node is at the current
maxLevel. The getNewLast algorithm returns node 10 as the new last node after node 11 is removed.

Discussion of Case 1 Example for getNewLast

Initially we have node = last = node 11. The first while loop replaces node with its parent while node is a left child. In
this example we exit the while loop (after two steps) with node = node 2 (it is the first nonleft child). The if statement
(node

Figure 14.21.
Details for getNewLast, Case 1 – new last node is at maxLevel.

Page 293

Figure 14.22.
Details for getNewLast, Case 2 – new last node is at maxLevel – 1.

is not the root) is executed. Statement node = node.parent.left sets node = node 1 (step3). The final while loop finds the
rightmost child of node 1 (after two steps), which is node 10. Node 10 is returned.

Figure 14.22 illustrates how parent is found for Case 2. Case 1 occurs when the new last node is at the current maxLevel
- 1. The getNewLast algorithm returns node 6 as the new last node after node 7 is removed.

Discussion of Case 2 Example for getNewLast

Initially we have node = last = node 7. The first while loop replaces node with its parent while node is a left child. In
this example we exit the while loop (after three steps) with node = node 2 (it is the first nonleft child). The if statement
(node is the root) is skipped. The final while loop finds the rightmost child of node 0 (after two steps), which is node 6.
Node 6 is returned.

Listing 14.5 provides full details for the class BinaryTreeHeap . It has two constructors, one for creating an empty heap
and one that creates a heap from an input array of Comparable objects. A number of private methods are used in class
BinaryTreeHeap to encapsulate details for various algorithms. Method getParent is a private method supporting public
method add. Rebuilding a broken heap after adding a new node is handled by private method restoreUp. Public method
removeTop uses private method getNewLast. After removal of the top element, a heap must be restored using private
method restoreDown .

Listing 14.5 Binary Tree Implementation of Interface Heap

/** class BinaryTreeHeap
* uses a special binary tree to represent the heap
* NOTE: equal keys do not maintain FIFO relationship
*/
package foundations;
import java.util.*;

Page 294

public class BinaryTreeHeap implements Heap {

 // Fields

 private HeapNode root;
 private HeapNode last;
 private int size;

 // Constructors

 /** Create an empty heap
 */
 public BinaryTreeHeap () {
 }

 /** Create a heap from elements in obj[]
 * objects must be Comparable
 */
 public BinaryTreeHeap (Object[] obj) {
 for (int i = 0; i < obj.length; i++)
 add((Comparable)obj[i]);
 }

 // Commands

 /** Add obj to the heap, maintaining a heap
 */
 public void add (Comparable obj) {
 HeapNode newNode = new HeapNode(obj);
 if (size == 0){
 root = newNode;
 last = newNode;
 }
 else {
 HeapNode parent = getParent();
 newNode.parent = parent;
 if (parent.isInternal())
 parent.right = newNode;
 else
 parent.left = newNode;
 last = newNode;
 }
 size++;
 if (size > 1)
 restoreUp(last);
 }

 /** Remove top obj from the heap, maintaining a heap
 */

Page 295

 public void removeTop () {
 if (size > 1){
 HeapNode newLast = getNewLast();
 if (last.isLeftChild())
 ((HeapNode)last).parent.left = null;
 else
 ((HeapNode)last).parent.right = null;
 root.contents = last.contents;
 last = newLast;
 size--;
 restoreDown(root);
 }
 else{
 root = last = null;
 size = 0;
 }
 }

 /** Sort the elements in the heap, maintaining a heap
 * use level-order heapsort algorithm
 */
 public void sort () {
 if (size > 1){
 int num = size;
 Vector temp = new Vector(size);
 for (int i = 0; i < num; i++){
 temp.add(top());
 removeTop();
 }
 for (int j = 0; j < temp.size(); j++)
 add((Comparable)temp.elementAt(j));
 }
 }

 /** Remove all objects from the container if found
 */
 public void makeEmpty () {
 root = null;
 last = null;
 size = 0;
 }

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty () {
 return size == 0;
 }

TE
AM
FL
Y

Team-Fly®

Page 296

 /** Return the number of objects in the container
 */
 public int size () {
 return size;
 }
 /** Return contents of the root - top of the heap
 * throw NoSuchElementException if heap is empty
 */
 public Comparable top () {
 if (!isEmpty())
 return root.contents;
 else
 throw new NoSuchElementException(''Heap is empty");
 }

 /** Return a level-order iterator
 */
 public Iterator traverseLevels () {
 Comparable [] data = new Comparable[size];
 buildArray(data, root, 0);
 Vector elements = new Vector(size);
 for (int i = 0; i < size; i++)
 elements.add(data[i]);
 return elements.iterator();
 }

 // Internal methods

 /** Return the parent for next insertion
 */
 private HeapNode getParent () {
 HeapNode node = last;
 while (node != root && !node.isLeftChild())
 node = node.parent;
 if (node != root)
 if ((HeapNode)node.parent.right == null)
 return node.parent;
 else
 node = (HeapNode)node.parent.right;
 while (node.left != null)
 node = (HeapNode)node.left;
 return node;
 }

 /** Return new last node if current last to be removed
 */
 private HeapNode getNewLast () {
 HeapNode node = last;

Page 297

 while (node.isLeftChild())
 node = node.parent;
 if (node != root)
 node = (HeapNode)node.parent.left;
 while (node.right != null)
 node = (HeapNode)node.right;
 return node;
 }

 /** After call to remove - restore heap property
 */
 private void restoreDown (HeapNode parent) {
 HeapNode next = (HeapNode) parent.left;
 HeapNode right = (HeapNode)parent.right;
 if (right != null
 && next.contents.compareTo(right.contents) > 0)
 next = right;
 while (next != null
 && next.contents.compareTo(parent.contents) < 0){
 swap(next, parent);
 parent = next;
 next = (HeapNode)parent.left;
 right = (HeapNode)parent.right;
 if (right != null
 && next.contents.compareTo(right.contents) > 0)
 next = right;
 }
 }

 /** After add a single item - restore heap property
 */
 private void restoreUp (HeapNode child) {
 HeapNode parent = child.parent;
 while (child != root
 && parent.contents.compareTo(child.contents) > 0){
 swap(child, parent);
 child = parent;
 parent = child.parent;
 }
 }

 /** Swap contents of two nodes
 */
 private void swap (HeapNode n1, HeapNode n2) {
 Comparable temp = n1.contents;
 n1.contents = n2.contents;
 n2.contents = temp;
 }

Page 298

 /** Recursively build data array in level-order
 */
 private void buildArray (Comparable[] data,
 HeapNode node, int index) {
 if (node != null){
 data[index] = node.contents;
 buildArray(data, (HeapNode)node.left, 2*index + 1);
 buildArray(data, (HeapNode)node.right, 2*(index+1));
 }
 }
}

Discussion of Listing 14.5

The sort command builds a temporary Vector called temp by sequentially removing the top element from the heap and
adding it to temp. The elements in temp are thus in ascending order. The heap is then rebuilt by iterating through the
vector and adding each element to the heap. The result is a sorted heap. The approach used in Listing 14.5 has
performance O(n log 2n). The remove operation is done O(n) times. Each removal invokes restoreDown with O(log 2n)
steps. This gives a total number of steps for removing all elements that is O(n log2n). The rebuild operation requires no
swaps during the restore operation and has O(n) steps. The total performance is then O(n log2 n) + O(n), which is
equivalent to O(n log 2 n). There are other algorithms for sorting a heap using in-place swapping logic that also perform
as O(n log 2 n).

The query traverseLevels starts by building a level-ordered array (using private method buildArray) from the binary tree
structure using a doubly recursive traversal of the tree. It manages the array indexing recursively based on relationships
between the index of a node and its left and right children. The array is then used to build a Vector so that traverseLevels
simply returns an iterator on the vector. An alternative would have been to encapsulate the array in a special
HeapIterator class and implement the required Iterator methods.

14.2.2.2—
Vector Implementation of Interface Heap

Based on our earlier discussion of an array representation for the heap data structure, it is clear that we may implement
the Heap interface using a vector or other linear list. Class VectorHeap is fully implemented and part of the foundations
package. It is left as an exercise for the reader to use a vector or linear list to develop his or her own equivalent
implementation using class VectorHeapE.

14.2.3—
Heap Laboratory

A heap laboratory is provided that uses implementations BinaryTreeHeap and VectorHeap to illustrate the properties of
a heap, plus three skeleton exercise implementations. It allows construction of each kind of heap implementation by
choosing from a pull-down combo box. The laboratory is designed to accept strings

Page 299

Figure 14.23.
UML class diagram for the heap laboratory.

as the contents of nodes in the heap. The laboratory tests all four commands and all four queries.

Figure 14.23 shows the major classes that are required for the heap laboratory to work.

Figure 14.24 shows a screen shot of the heap laboratory after exercising several options. Three strings (ddd, bbb, and
aaa) are added. We then verify queries size, traverseLevels, isEmpty, and top. Next we sort the heap and verify using
traverseLevels . Next we test removeTop and verify using size and traverseLevels. Finally, we test makeEmpty and verify
using size.

Figure 14.24.
Heap laboratory screen shot.

Page 300

14.3—
Priority Queues

14.3.1—
The PriorityQueue Abstract Data Type

A priority queue is a special kind of queue that removes elements based on priorities. Highest priority elements are
removed first. Elements with a higher priority are always removed before elements with a lower priority. If there are
multiple items with the same priority, they are removed in the order in which they were added to the priority queue. The
elements in a priority queue must be comparable. Highest priority may be chosen as the smallest value (e.g., highest = 0)
or the maximum value (lowest = 0) of an Integer wrapped int field in implementing classes for priority queue. Other
comparable keys may also be used dependent on the implementation.

Generally the elements stored in a priority queue consist of (1) a priority (key) and (2) information to be stored. We may
easily use our Association class to represent the elements in a priority queue, where the key is the priority and the value
is the stored information. In this case only the key needs to be comparable. In this chapter and in implementations for
priority queue, the highest priority is defined by the lower comparative value (e.g., 0 if an int, alphabetically first for
strings or characters). More precisely, key2 has lower priority than key1 if

key1.compareTo(key2) < 0.

As a simple example of a priority queue, students with the fewest number of hours remaining before graduation (fewer
options on courses) may be given earlier registration time slots.

A PriorityQueue behaves differently than a Queue . Its contained objects must be Comparable , whereas a Queue may
contain any object. The ordering of a priority queue is based on priorities (a property of the contained objects). A queue
has order based on the history of additions and removals of objects. On close examination we find that a priority queue
has properties defined by interface SearchTable with only one additional command (add) and two additional queries
(priorities, highest) added for convenience. Thus interface PriorityQueue extends interface SearchTable.

Interface PriorityQueue is given in Listing 14.6 (repeated from Chapter 10). The command add is a convenient method
for adding an Association to a priority queue by specifying the key and value . Query highest returns the highest priority
object without removing it from the priority queue. Query priorities returns an Iterator on the priorities (keys) in the
priority queue.

Listing 14.6 Interface PriorityQueue

/** Interface PriorityQueue
* Contained objects must implement Comparable
*/
package foundations;
import java.util.*;

Page 301

public interface PriorityQueue extends SearchTable {

 // Commands

 /** Add an Association as key-value pair; priority is key
 */
 public void add (Comparable key, Object value);

 // Queries

 /** Return the object with highest priority
 * Throw NoSuchElementException if priority queue is empty
 */
 public Comparable highest ();

 /** Return an iterator on the priorities
 */
 public Iterator priorities ();
}

Table 14.3 lists all the required commands and queries for implementation by classes that implement the PriorityQueue
interface.

Command remove inherited from SearchTable is usable if we ignore the parameter. Removal from a PriorityQueue is
restricted to always be the top element

Table 14.3 Public Interface to PriorityQueue

Commands

public void add(Comparable key, Object value); Add a new association with <key:value>

public void add(Comparable obj); From SearchTable

public void remove(Comparable obj); From SearchTable – use null for parameter
since the object removed is always the one
with highest priority.

public void makeEmpty() From Container

Queries

public Comparable highest() Return object with highest priority

public Iterator priorities() Return an iterator on the keys (priorities)

public boolean contains(Comparable obj) From SearchTable

public Comparable get(Comparable obj) From SearchTable

public Iterator elements() From SearchTable

public boolean isEmpty() From Container

public int size() From Container

Page 302

(no parameter is needed). An alternative design could implement the inherited remove method to do nothing and define a
new remove method with no parameters to do the removal of the top element.

14.3.2—
Implementation of PriorityQueue Using a Vector of Queues

One implementation for PriorityQueue uses a vector of queues. This implementation is very useful for applications
wherein a large number of objects may exist over a limited range of priorities. Many of the objects will have duplicate
priorities. A typical example is given by a large number of Java threads running at the same time. Thread priorities range
from one to ten (ten is maximum priority) and there may be many more than ten threads executing at the same time. This
is an example in which highest values have highest priority. Priorities may be mapped into indices in the vector using a
simple translation, index = 10 – priority, to place highest priorities at index 0. Each index position in the vector contains
a queue. This allows the priority queue to grow and shrink dynamically and preserve the first-in, first-out property for
equal priorities.

We define a class called QueuesPriorityQueue that implements PriorityQueue using a vector of queues. In our
implementation, zero represents the highest priority. This maps nicely into index position 0 of the vector. A typical
snapshot of the vector of queues might look as shown in Figure 14.25.

In the priority queue in Figure 14.25, we have three objects with priority 0, inserted in the order a, c, k. There is one
object, g, with priority 1. There are two objects with priority 3 inserted in order d, e. Queues in positions 2 and 4 through
9 of the vector are empty.

Objects in the priority queue will be removed in an order determined by priority first, and then first in, first out. Object
(0, a) will be the first to be removed, object (0, c) second, and so on. After all objects in the queue at index = 0 have been
removed, objects at index = 1 are removed, and so on, until all objects have been removed.

The data structure for our implementation of QueuesPriorityQueue may be described as a vector of queues. The
elements in an instance of class java.util.Vector

Figure 14.25.
Snapshot: dynamic vector of queues implementation of PriorityQueue.

Page 303

Figure 14.26.
Design for implementation of PriorityQueue using a vector of queues.

will be instances of a queue class. Can we use one of the implementations for interface Queue developed in Chapter 11?
Since we want the queues to be dynamically sized, LinkedQueue is our first candidate. All the commands and queries
provided by LinkedQueue are useful; however, it is inefficient for adding new nodes (we must always start at the front)
and it has no support for iteration (and we need iteration). As a possible design choice we may create a subclass of
LinkedQueue called IterativeQueue that is more efficient (adds a field for the last element of the queue) and supports
iteration (using an inner class). This is the choice made in our implementation of QueuesPriorityQueue. The design is
shown in Figure 14.26.

IterativeQueue is part of the foundations package and is available for use by the reader. We present only its public
interface in Listing 14.7 as a guide to its use.

Listing 14.7 Public Interface to Class IterativeQueue

/** Dynamic queue with iteration and improved efficiency
* extension of LinkedQueue
*/

Page 304

package foundations;
import java.util.*;

public class IterativeQueue extends LinkedQueue {

 // Commands

 /** Override from parent class to increase efficiency using last
 */
 public void add (Object item);

 /** Override from parent class - must add update for last
 */
 public void remove ();

 // Queries

 /** Return an iterator over all elements in the queue
 */
 public Iterator elements ();

 // Inner class for iteration

 class QueueIterator implements Iterator {

 // Commands

 public void remove ();

 // Queries

 public boolean hasNext ();

 public Object next ();
 }
}

A full implementation for QueuesPriorityQueue is included in the foundations package. Listing 14.8 gives limited
details for the implementation of QueuesPriorityQueue, including selected private methods and the inner class
PQIterator.

Two constructors are provided for creating vectors of default size ten or some specifiable size. The size of the vector is
the range of possible priorities. Details are given for query highest , showing how to return the highest priority object in
the priority queue. If the priority queue is empty, highest throws a NoSuchElementException . The user of this class
should test if the priority queue is empty before invoking highest or catch and handle the exception.

Private method validate ensures that the priorities of any entered objects are of type Integer and within the required
range of

Page 305

0 = priority < maxValue.

Inner class PQIterator implements Iterator and provides iteration over the contained elements of the priority queue or
over the priorities by using a value of ELEMENTS or PRIORITIES for parameter type in the constructor for PQIterator.

Listing 14.8 Selected Details of Class QueuesPriorityQueue

/** Class QueuesPriorityQueue
* - array of Queues implementation of PriorityQueue
* good for many duplicates of a few priorities, e.g., threads
* Priorities must be Integer in range: 0 <= priority < maxValue
* Elements are automatically sorted by (1) priority, then (2) FIFO
*/
package foundations;
import java.util.*;

public class QueuesPriorityQueue implements PriorityQueue {

 // Fields

 Vector pq; // dynamic array of Queues
 int size;
 int maxValue; // highest value = lowest priority
 static int ELEMENTS = 0; // support iteration
 static int PRIORITIES = 1; // support iteration

 // Constructors

 /** Default constructor for 0 <= priority < 10
 */
 public QueuesPriorityQueue () {
 this (10);
 }

 public QueuesPriorityQueue (int max) {
 maxValue = max;
 pq = new Vector (maxValue);
 for (int i = 0; i < maxValue; i++)
 pq.add(new IterativeQueue());
 }

 // Commands

 /** All commands left as an exercise */

 // Queries

 /** Most queries left as an exercise */

TE
AM
FL
Y

Team-Fly®

Page 306

 /** Return the highest priority element in the pq.
 * Search all indices for nonempty queue.
 * Throw NoSuchElementException if pq is empty.
 */
 public Comparable highest () {
 try {
 for (int j = 0; j < maxValue; j++) {
 Queue q = (Queue)pq.elementAt(j);
 if (!q.isEmpty())
 return (Comparable)q.front();
 }
 } catch(Exception ex) {
 throw new NoSuchElementException(
 ''Priority Queue is empty");
 }
 return null;
 }

 // Internal methods

 /** Validate that obj is Integer or Association
 * and 0 <= val < maxValue
 */
 private int validate (Comparable obj) {
 int val;
 if (!(obj instanceof Integer)
 && !(obj instanceof Association))
 throw new IllegalArgumentException(
 "Argument to add() must be Integer or Association");
 else if (obj instanceof Integer)
 val = ((Integer)obj).intValue ();
 else
 val = ((Integer)((Association)obj).key()).intValue ();
 if (val < 0 || val >= maxValue)
 throw new IllegalArgumentException(
 "Integer out of range");
 return val;
 }

 // Inner class PQIterator

 class PQIterator implements Iterator {

 // Fields

 Comparable [] data;

Page 307

 int type;
 int index = 0;

 // Constructor

 PQIterator (int type) {
 int i = 0;
 data = new Comparable [size];
 for (Iterator it1 = pq.iterator(); it1.hasNext();){
 IterativeQueue q = (IterativeQueue)it1.next();
 for (Iterator it2 = q.elements (); it2.hasNext();)
 data[i++] = (Comparable) it2.next();
 }
 this.type = type;
 }

 // Commands

 public void remove () { // null implementation
 }

 // Queries

 public Object next () {
 Comparable obj = data[index++];
 if (type == PRIORITIES && obj instanceof Association)
 return ((Association)obj).key();
 else
 return obj;
 }
 public boolean hasNext () {
 return index < size;;
 }
 }
}

14.3.3—
Implementation of PriorityQueue Using a Heap

A heap has the same structure as a priority queue. It is a binary tree with the highest priority item at the top or root node.
Using a heap to implement a priority queue is a natural and obvious choice. There is one small variation in the behavior
of a heap that is not consistent with our stated behavior for a priority queue. A heap does enforce removal of the highest
priority items first; however, it does not ensure a first-in, first-out (FIFO) order for items of equal priority. At least this is
true for our implemented behavior of a heap. This anomaly is illustrated by a simple example.

Page 308

Figure 14.27.
Implementing a priority queue with a heap: FIFO anomaly.

Suppose we build a priority queue using a heap by adding sequentially the following associations:

Add: (1,a) (2,a) (1,b) (3,a) (4,a) (1,c) (6,a)(1,d)

Following the logic for command add in building the heap, we get the result shown in Figure 14.27. It should be clear
that the removal order for items with priority 1 is changed from: a - b - c - d to: a - d - b - c. Correction of this anomaly
requires storage of an extra ordering factor and additional logic in the comparison of keys in the heap-implementing
class. This is left as an advanced exercise.

On a positive note, the heap implementation for priority queue can easily handle a large number of wide-ranging
priorities. There is no implied desirability for the priorities to be mapped into low indices of an array as was true for the
array of queues implementation.

A design diagram for implementing interface PriorityQueue using a heap (specifically class BinaryTreeHeap) is shown
in Figure 14.28 as a UML class diagram.

Inner class PQIterator implements the iterator of query priorities . The iterator for elements is implemented as a call to
the traverseLevels query in class BinaryTreeHeap , which returns a level-order iterator on the elements in the heap. The
implementation for most commands and queries in HeapPriorityQueue uses simple commands and queries sent to field
theHeap (instance of BinaryTreeHeap). Two notable exceptions are queries get and contains . These queries have no
equivalent implementation for a heap and must be created for the priority queue.

Listing 14.9 shows selected implementation details for class HeapPriorityQueue . A complete implementation (as a
HeapPriorityQueue.class file) is provided as part of the foundations package. Details are included for the get, contains,
elements , and highest queries.

Queries get and contains must iterate over the elements in the heap by sending query traverseLevels to field theHeap
and testing for the Comparable parameter of each.

Page 309

Figure 14.28.
UML class diagram for heap implementation of PriorityQueue.

An important feature of the heap is that its elements satisfy the heap-ordering property but are not necessarily sorted. In
implementing the elements query of PriorityQueue we must return an iterator over a sorted list of items. It is thus
necessary to sort the heap before doing a traversal in the implementation of query elements as shown in Listing 14.9.

In the highest query we normally expect to return the top of the heap; however, if the heap is empty we throw a
NoSuchElementException .

Listing 14.9 Selected Implementation Details for Class HeapPriorityQueue

/** Class HeapPriorityQueue - Heap implementation of PriorityQueue
* good for many priorities - Priorities must be Comparable
* higherPriority.compareTo(lowerPriority) < 0
*/
package foundations;
import java.util.*;

public class HeapPriorityQueue implements PriorityQueue {

 // Fields

 private Heap theHeap = new BinaryTreeHeap ();
 private int size;

Page 310

 private boolean sorted; // sort only when necessary

 // Constructors - use default

 // Commands

 /** Send appropriate commands to field heap
 * Details left as an exercise
 */

 // Queries

 /** Where appropriate send queries to field theHeap
 * Details left as an exercise
 */

 /** Return true if the priority queue contains obj
 * no direct support by Heap - iterate to find
 */
 public boolean contains (Comparable obj) {
 for (Iterator i = theHeap.traverseLevels(); i.hasNext();)
 if (((Comparable)i.next()).compareTo(obj) == 0)
 return true;
 return false;
 }

 /** Return without removing obj if in table
 * useful when obj is a key & returns an Association
 * no direct support by Heap - iterate to find
 */
 public Comparable get (Comparable obj) {
 for (Iterator i = theHeap.traverseLevels(); i.hasNext();) {
 Comparable o = (Comparable)i.next();
 if (o.compareTo(obj) == 0)
 return o;
 }
 return null;
 }

 /** Return an iterator on all elements
 * sort them first
 */
 public Iterator elements () {
 if (!sorted)
 theHeap.sort();
 sorted = true;
 return theHeap.traverseLevels();
 }

Page 311

 /** Return the object with highest priority
 * Throw NoSuchElementException if priority queue is empty
 */
 public Comparable highest () {
 try{
 return theHeap.top();
 } catch (Exception ex) {
 throw new NoSuchElementException(
 ''PriorityQueue is empty");
 }
 }

 /** Other details left as an exercise */
}

14.3.4—
Priority Queue Laboratory

We provide a priority queue laboratory for testing the commands and queries of classes implementing interface
PriorityQueue. It is designed to include both the array of queues implementation and the heap implementation. Figure
14.29 shows a UML class diagram for classes used by the priority queue laboratory.

Class PQAppUI uses a generic field PriorityQueue pq to represent the selected implementation for PriorityQueue. This
field may be instantiated as an instance of class HeapPriorityQueue or QueuesPriorityQueue.

A screen shot of the priority queue laboratory is shown in Figure 14.30 after several options have been exercised. The
user selects Comparable objects or Associations for insertion into the priority queue on first use of the Add(key) or Add
(key,value) buttons. The user in Figure 14.30 has selected Associations. The iterators return key-ordered results as
expected.

Figure 14.29.
UML class diagram for priority queue laboratory.

Page 312

Figure 14.30.
Screen shot of the priority queue laboratory.

14.4—
Summary

This chapter covers Tree, Heap, and PriorityQueue containers, all of which may be implemented as nonlinear structures.

• A tree is a nonlinear structure composed of nodes. A tree is accessible only through a special node called the root.

• A BinaryTree is a tree whose nodes have at most two descendant trees as offspring. A BinaryTree is characterized by
queries for traversing its nodes and for measuring average path length.

• A perfectly balanced binary tree has a unique logarithmic relation of its height to the number of nodes it contains. The
average path length for a perfectly balanced binary tree is approximately equal to one less than its height.

• A binary expression tree is a binary tree that represents binary expressions. An expression tree is easily built from a
postfix form of the expression it represents. Traversals of an expression tree produce the prefix, infix, and postfix strings
for the represented expression.

• A heap is a complete binary tree whose nodes satisfy the heap-ordering property, that the contents of any node is no
larger than the contents of any of its descendant nodes. A heap may also be designed as a linear indexable list. A heap
also has the property that it may be used for efficient sorting.

• A priority queue is a special queue that contains prioritized objects. Since its objects must be Comparable, a
PriorityQueue has behavior consistent with a SearchTable . It has the property that the next value removed is always

Page 313

highest priority. A priority queue may be implemented using a heap or a linear structure.

14.5—
Exercises

1 Calculate precisely the average path length (APL) of an optimally balanced binary tree with 10,000 nodes. Compare
this value with the APL of a perfectly balanced binary tree that has the same height.

2 In Section 14.1.2.2 we define an algorithm, buildExpressionTree() , that builds an expression tree from the postfix
string of a binary expression. The algorithm uses a stack of nodes. Define a new algorithm, buildExpressionTree() , for
building an expression tree from the prefix form of an algebraic expression.

3 A complete solution to class ExpressionBinaryTree (shown partially in Listing 14.3) is provided in the foundations
package and works with the expression tree laboratory (found in the ExpressionTree folder as part of the downloadable
notes). Verify that the expression tree laboratory works as expected. You may copy the entire ExpressionTree folder into
a directory of your choice and run the batch file named Goui.bat

4 File ExpressionBinaryTree.java in the ExpressionTree\support folder is a copy of Listing 14.3 (which gives only a
partial implementation for the expression tree) with small changes to make it compilable. File SearchTreeNode.java is a
supporting class for ExpressionBinaryTree. File ExpressionTest.java is a simple test class. Note that these classes are not
part of package foundations nor do they require any classes in package foundations except the Container interface and
class FunctionEvaluation . Batch file Go.bat compiles all source files and runs the test class. You are required to
complete the details for class ExpressionBinaryTree. Additional statements may be added to class ExpressionTest to
expand on the testing performed.

5 Repeat Exercise 4 using the prefix version of buildExpressionTree() developed in Exercise 2. This requires
consideration of what field(s) should be part of class ExpressionBinaryTree.

6 A complete solution to class BinaryTreeHeap (shown in Listing 14.5) is provided in the foundations package and
works with the heap laboratory (found in the Heap folder as part of downloadable notes in foundations.zip).

a. Verify that the heap laboratory works as expected for the binary tree implementation in class BinaryTreeHeap .
You may copy the entire Heap folder into a directory of your choice and run the batch file named Goui.bat.

b. Folder Heap\foundations contains a skeletal implementation for Heap called BinaryTreeHeapE that compiles and
runs but does little else. Complete all details for class BinaryTreeHeapE and verify that it works using the heap
laboratory. In your implementation of BinaryTreeHeapE , use a binary tree as the data structure that contains the
heap elements. This implementation is to obey the rules of a heap and is to provide first-in,

Page 314

first-out (FIFO) behavior for all duplicate keys. Recall that implementation BinaryTreeHeap did not preserve FIFO
for duplicate keys.

7 Using the skeletal implementation in Heap\foundations\VectorHeapE.java, develop a complete implementation for
Heap, using a Vector as the element container. A complete working solution is already contained in class VectorHeap in
the foundations package. Verify that the implementation, VectorHeap , works properly and that your implementation,
VectorHeapE , works properly. Both implementations may be tested using the heap laboratory.

8 Using the skeletal implementation in Heap\foundations\HeapE.java , develop a complete implementation for Heap,
using your choice of data structure as the element container. Your implementation may be tested using the heap
laboratory.

9 Listing 14.8 shows a partial implementation for class QueuesPriorityQueue that uses a Vector of Queue to store the
elements of a PriorityQueue. Using the file QueuesPriorityQueueE.java (similar to Listing 14.8) in folder
PriorityQueue\foundations, complete the implementation details. Package foundations has a complete solution in class
QueuesPriorityQueue. Test both implementations using the priority queue laboratory. The laboratory may be launched
by running batch file Goui.bat in the PriorityQueue folder.

10 Listing 14.9 provides a partial implementation for PriorityQueue using a heap. Package foundations provides a
complete solution in class HeapPriorityQueue that uses BinaryTreeHeap . File
PriorityQueue\foundations\HeapPriorityQueueE.java provides a skeletal implementation of PriorityQueue (similar to
Listing 14.9). Complete the details of class HeapPriorityQueueE using BinaryTreeHeapE , developed in Exercise 6b.
Your implementation will preserve the FIFO property for equal priorities. Test your implementation using the priority
queue laboratory.

11 File PriorityQueue\foundations\PriorityQueueE.java is a skeletal implementation for PriorityQueue. Add details to
this class using a data structure of your choice for containing elements in the priority queue. Test your implementation
with the priority queue laboratory.

Page 315

15—
Search Trees

Binary trees were introduced in the previous chapter. A binary tree holds the generic Object type that serves as a
placeholder for any reference type. This combined with its nonlinear structure makes it suitable for representing a
diversity of information.

This chapter focuses on a specialized but extremely important tree type – the search tree. Such a binary tree holds
elements of type Comparable . That is, the elements stored in a search tree may be compared to one another by
answering to the query compareTo. The goal of a search table is to provide efficient access to information while
allowing the information to be output in an ordered sequence. The order of elements in a binary search tree is based on a
comparable property of the elements themselves.

In Chapter 13 we examined the OrderedList as a concrete implementation of a SearchTable. Here we shall examine
three concrete search tree classes, each providing an implementation of the interface SearchTable. These concrete
classes are BinarySearchTree, AVLTree , and SplayTree. In addition, we shall investigate another interesting and recent
implementation of SearchTable , given by class SkipList.

15.1—
Review of Search Table Abstraction

Recall from Chapter 10 that a search table is a compact abstraction that extends Container and provides the commands
add and remove in addition to the command makeEmpty in class Container . The queries contains, get, and iterator are
provided by SearchTable in addition to the queries isEmpty and size inherited from Container .

The commands add and remove and the queries get and contains have a parameter, obj, of type Comparable .

The interface SearchTable is given in Listing 15.1.

Listing 15.1 Interface SearchTable

/** Interface SearchTable
* The elements in this container must be of type Comparable.
*/ TE

AM
FL
Y

Team-Fly®

Page 316

package foundations;
import java.util.*;

public interface SearchTable extends Container {

 // Commands

 /** Add obj to the table; must be Comparable
 */
 public void add (Comparable obj);

 /** Remove obj from table, if found
 */
 public void remove (Comparable obj);

 // Queries

 /** Return true if the table contains obj
 */
 public boolean contains (Comparable obj);

 /** Return obj if in table
 * useful when obj is a key & returns an Association
 */
 public Comparable get (Comparable obj);

 /** Return an iterator on all elements
 */
 public Iterator elements ();
}

15.2—
Binary Search Tree

A binary search tree is a specialized type of binary tree. In order for the tree to qualify as a binary search tree, each of
its nodes must satisfy the following two conditions:

1. All elements in its left subtree must have key values smaller than the key value of the node.

2. All elements in its right subtree must have key values larger than the key value of the node.

We may compare key values of two nodes by using the query compareTo on the key values (the elements in the tree are
of type Comparable).

In Figure 15.1 we examine a binary search tree.

Suppose we were to change the value of node 750 to 450. This would violate the search tree property since all the
elements in the right subtree of 500 must have values greater than 500. A value of 450 to the left of 800 would

Page 317

Figure 15.1.
Binary search tree.

violate this condition. Likewise, suppose we were to change the value of node 200 to 350. This would also violate the
search tree property. All the elements in the left subtree of 300 must be smaller than 300, and 350 would violate this
condition.

There are six levels shown in the binary search tree of Figure 15.1. As indicated in Chapter 14, the root node is always at
level 0. Each of its children, if any, is at level 1. Its grandchildren, if any, are at level 2. The height of the tree is given by
the deepest level of any node in the tree.

Leaf nodes are defined as nodes with no children. In Figure 15.1 the leaf nodes are 50, 200, 950, 750, 850, and 400.

15.3—
Searching for an Element in a Search Tree

Suppose we wish to determine whether the element 750 is present in the search tree of Figure 15.1.

We start by comparing 750 to the element in the root node. Since 750 is larger than 300 we can eliminate the left subtree
of the root node from further

Page 318

consideration. Next we compare 750 to the right child of the root. Since 750 is smaller than 900 we can eliminate the
right subtree of 900 from further consideration. Next we compare 750 to the left child of 900. Since 750 is larger than
500 we descend to the right, eliminating the left subtree of 500 from further consideration. We next compare 750 with
700, again descending to the right because 750 is larger than 700. We next compare 750 with 800, descending to the left
since 750 is smaller. Finally, we compare 750 with 750, discovering the presence of 750 in the binary search tree.

The algorithm used above for searching may be summarized as follows if the object we are searching for is defined as
the search key:

1. Starting with the root node, compare the search key with the key in the root node.

2. Descend to the left if the search key is smaller than the key in the root.

3. Descend to the right if the search key is larger than the key in the
root.

4. Recursively continue this process of comparison and descent until either the search key is found or the bottom of the
tree is encountered.

The efficiency of our search may be measured in terms of the number of comparison operations that are required. This
depends of course on the particular element being sought. The best case occurs when the search key is found in the root
node. If the search key is present, the worst case occurs when the search key is found at a leaf node furthest from the
root (either node 750 or 850 in the tree of Figure 15.1). If the search key is not present, the worst case occurs if the
search key would have been directly below a leaf node furthest from the root (either below node 750 or 850 in Figure
15.1). So if we were searching for node 775, it would require six comparison operations before descending to the bottom
of the tree.

It is important for us to know the maximum level (height) of a search tree. This represents the level of the deepest leaf
node (the leaf node furthest from the root). In Figure 15.1, the maximum level is 5. This metric provides a bound on the
worst case search performance (i.e., maximum level + 1 comparison operations in worst case for any tree).

Another important metric is the balance of a search tree.

15.4—
Balance of Search Tree

The search tree of Figure 15.1 contains twelve nodes. How much computational effort would be required to search for a
node in this tree? Again, it depends on which node we are searching for. Suppose we form the sum of the number of
comparison operations required for all the nodes and divide by the number of nodes. This would represent the ''average"
effort required to search for an arbitrary node in the tree. We define this metric as ACE (average comparison effort). The
smaller this value, the smaller the computational effort required to locate a search key in the tree or determine that a
search key is not present. The ACE is equal to the average path length plus 1.

Page 319

Figure 15.2.
Optimally balanced search tree.

Let us compute the ACE for the tree of Figure 15.1. Summing the comparison operations over all the nodes gives us:

1 + 2 * 2 + 4 * 3 + 2 * 4 + 1 * 5 + 2 * 6 = 42

Taking the ratio of this sum with the number of nodes gives us the result 42/12 = 3.5. On the average, it takes 3.5
comparison operations to locate a randomly selected node.

Clearly, if the tree were more balanced we could reduce this average search effort. Figure 15.2 shows a tree with twelve
nodes that is optimally balanced. The ACE of this tree is:

(1 * 1 + 2 * 2 + 4 * 3 + 5 * 4)/12 = 3.08.

Therefore, the average search effort to locate a search key in the tree of Figure 15.2 is 88 percent of that required to
locate a search key in the tree of Figure 15.1.

In general, the ACE of a binary search tree may be computed as follows:

ACE = Σ(#nodes at levelj) ∗ (j + 1)/n, for n nodes in the tree, as j varies from 0 to the maximum level in the tree.

As seen in Chapter 14, a search tree is perfectly balanced if and only if:

1. The tree contains 2n - 1 nodes where n is the tree height +1.

Page 32

Table 2.1 Primitive Types and Their Associated Wrapper Classes

Primitive Type Wrapper Class

int Integer

long Long

short Short

float Float

double Double

boolean Boolean

char Character

byte Byte

void Void

case one needs to ''wrap" the primitive type into a wrapper object and store the wrapper object in the collection class.
When retrieving information from the collection class, one needs to "unwrap" the primitive from its wrapper.

Figure 2.4 is a UML diagram that shows the hierarchical relationship among wrapper classes.

2.6—
Wrapping and Unwrapping – Conversion from Object to Scalar and Scalar to Object

Suppose one wishes to wrap an int to its wrapper Integer . The following line of code illustrates this process.

Figure 2.4.
Hierarchy of wrapper classes.

Page 320

Figure 15.3.
Perfectly balanced search tree.

2. The number of nodes at each level in the tree equals twice the number of nodes at the previous level, for all levels
from 1 to the maximum level in the tree.

Figure 15.3 shows a perfectly balanced tree with fifteen nodes (24 - 1). Its ACE equals (1 + 2 ∗ 2 + 4 ∗ 3 + 8 ∗ 4)/15.
There is no search tree of fifteen nodes with a smaller value for ACE.

15.5—
Adding an Element to a Binary Search Tree

The process of adding an element to a binary search tree is similar to searching for an element. Starting at the root node
we descend either left or right through a sequence of nodes based on the same criteria as for searching. That is, descend
left if the node you are adding is less than the contents of a given node, descend right if the node you are adding is
greater than the contents of a given node. Eventually the bottom of the tree will be reached at some leaf node. The node
to be added is placed either to the left or the right of this leaf node (based on whether the element being inserted is
smaller or larger than the contents of the leaf node). In short, the node to be added is placed in the tree at the exact
location where it would be found (using search logic) if it were already in the tree.

As an example, consider the addition of element 70 to the tree of Figure 15.3. It would be placed under and to the right
of node 65.

15.6—
Removing an Element in a Binary Search Tree

There are three cases to consider when removing an element from a search tree.

The simplest case is associated with the removal of a leaf node. In this case the node is simply clipped from the tree.

Page 321

Figure 15.4.
Removing a node from a search tree.

The second simplest case is that in which the node to be removed has exactly one child. In this case a linked-list–like
remove is performed. The parent of the node being removed is relinked to the only child of the node being removed.

The most complex case is that in which the node being removed has two children. We illustrate this case with the search
tree in Figure 15.4.

Suppose we wish to remove the root node 300 from the tree of Figure 15.4. We must first identify the node just smaller
than node 300 that is closest in value to node 300 (the in-order predecessor). We can see by inspection that this node is
275. In general the node closest in value to the node that we are removing, but smaller than this node, would be found by
descending left one level and then descending as far to the right as possible. This node shall replace the node we are
removing. More precisely, we replace the contents of the root node with the contents of the ''replacement" node. Then
we remove the replacement node from the tree. This latter removal is simple because the replacement node will either
have no children (be a leaf node) or have at most one child, as in Figure 15.4. We have already seen that it is relatively
easy to handle a leaf or one -child node removal. The result of applying this strategy is shown in Figure 15.5 after node
300 is removed.

As an alternative, we could have replaced node 300 by the node just larger than 300 (the in-order successor). We shall
utilize the in -order predecessor in this chapter.

Page 322

Figure 15.5.
Tree after the removal of root node.

With the basic strategies for adding and removing nodes established we must formulate precise algorithms for
accomplishing these tasks. These algorithms shall be expressed in the implementation of add and remove methods
presented in the next sections.

15.7—
Method Add for Binary Search Tree

Listing 15.2 presents the public method add supported by an internal (private) method insertNode.

Listing 15.2 Method add in Class BinarySearchTree

/** Add obj to the table; must be Comparable */
public void add (Comparable obj) {
 root = insertNode(root, obj);
 numberElements++;
}

// Internal methods

private SearchTreeNode insertNode (SearchTreeNode node,
 Comparable item) {
 if (node == null)
 return new SearchTreeNode(item);
 else if (item.compareTo(node.contents) < 0) {
 node.left = insertNode(node.left, item);
 return node;
 }

Page 323

 else if (item.compareTo(node.contents) > 0) {
 node.right = insertNode(node.right, item);
 return node;
 }
 else // Attempt to insert a duplicate
 throw new UnsupportedOperationException(
 ''add::obj already in binary search tree.");
}

Most of the work of add is handled by the private method insertNode . This method is invoked with the root node as the
first parameter and the object being added as the second parameter. If the object (obj) being inserted is already present,
this triggers an UnsupportedOperationException to be thrown.

Let us walk through the recursive function insertNode using the tree of Figure 15.5, assuming that we wish to insert the
element 225.

Starting at the root, since item is less than the root (275) we assign the left child of the root to the return value after
invoking insertNode recursively with node 200 as the first parameter. This recursive descent continues by descending to
node 250. Since item is smaller than 250 we invoke insertNode again with null as the first parameter (since we are at the
bottom of the tree). The "if" clause is executed when the node equals null. A new SearchTreeNode is constructed and
assigned to the left of node 250. This completes the process of adding node 225.

15.8—
Method Remove for Binary Search Tree

Listing 15.3 presents the details of the public method remove and supporting private methods deleteNode, rightMost,
and deleteRightMost.

Listing 15.3 Method remove in Class BinarySearchTree

/** Remove obj from table, if found */
public void remove (Comparable obj) {
 root = deleteNode(root, obj);
 numberElements--;
 if (numberElements == 0)
 root = null;
}

private SearchTreeNode deleteNode (SearchTreeNode node,
 Comparable item) {
 if (node == null)
 throw new NoSuchElementException(
 "remove::obj not in binary search tree.");
 if (item.compareTo(node.contents) < 0)
 node.left = deleteNode(node.left, item);

Page 324

 else if (item.compareTo(node.contents) > 0)
 node.right = deleteNode(node.right, item);
 else if (item.compareTo(node.contents) == 0) { // item found
 if (node.left == null) // no children or only a right child
 node = node.right;
 else if (node.right == null) // only a left child
 node = node.left;
 else { // two children
 // deletes using the rightmost node of the left subtree
 Comparable replaceWithValue = rightMost(node.left);
 node.contents = replaceWithValue;
 node.left = deleteRightMost(node.left);
 }
 }
 return node;
}

private Comparable rightMost(SearchTreeNode node) {
 if (node.right == null)
 return node.contents;
 else
 return rightMost(node.right);
}

private SearchTreeNode deleteRightMost(SearchTreeNode node) {
 if (node.right == null)
 return node.left;
 else {
 node.right = deleteRightMost(node.right);
 return node;
 }
}

Let us again walk through an example exercising the code in Listing 15.3. We show the process of deleting node 300
from the tree of Figure 15.4.

Method remove requires that the obj being removed be in the tree. The root is assigned the return value of the recursive
function deleteNode.

Starting at node 300, the final else clause (with the comment ''two children") is executed. The replaceWithValue is
computed using the recursive private function rightMost . The function returns a value of 275. The contents of node (the
root node) are assigned 275. The left child of the root is assigned the return value of deleteRightMost.

The recursive protected function deleteRightMost descends to the right until node.right is null (node 275 satisfies this
condition). It then returns node 260, which is then linked to the right of node 250 (since node.right = deleteRightMost
(node.right)).

TE
AM
FL
Y

Team-Fly®

Page 325

The remaining commands and queries of class BinarySearchTree are presented in Listing 15.4.

Listing 15.4 Class BinarySearchTree

/** A binary search tree implementation without duplicates.
*/
package foundations;
import java.util.*;

public class BinarySearchTree implements SearchTable, BinaryTree {

 // Fields
 protected SearchTreeNode root = null;
 protected int numberElements = 0;
 protected int maxLevel;

 // Constructor - use default BinarySearchTree()

 // Commands

 /** Add obj to the table; must be Comparable */
 public void add (Comparable obj) {
 // See Listing 15.2
 }

 /** Remove obj from table, if found */
 public void remove (Comparable obj) {
 // See Listing 15.3
 }

 /** Remove all objects from the container if found */
 public void makeEmpty () {
 destroy(root);
 root = null;
 numberElements = 0;
 }

 // Queries

 public boolean isEmpty () {
 return root == null;
 }

 public int size () {
 return numberElements;
 }

Page 326

 /** Return true if the table contains obj */
 public boolean contains (Comparable obj) {
 if (numberElements == 0)
 return false;
 SearchTreeNode current = root;
 while (current != null) {
 if (obj.compareTo (current.contents) < 0)
 current = current.left;
 else if (obj.compareTo(current.contents) > 0)
 current = current.right;
 else
 break;
 }
 return current != null;
 }

 /** Return obj if in table
 * useful when obj is a key & returns an Association
 */
 public Comparable get (Comparable obj) {
 if (numberElements == 0)
 return null;
 SearchTreeNode current = root;
 boolean found = false;
 while (current != null && !found) {
 if (obj.compareTo (current.contents) == 0)
 found = true;
 else {
 if (obj.compareTo (current.contents) < 0)
 current = current.left;
 else
 current = current.right;
 }
 }
 return current.contents;
 }

 public Iterator elements () {
 return traverseInorder();
 }

 public Iterator traverseInorder () {
 return new TreeInorderIterator(root);
 }

 public Iterator traversePreorder () {
 return new TreePreorderIterator(root);
 }

Page 327

 public Iterator traversePostorder () {
 return new TreePostorderIterator(root);
 }

 public int maxLevel () {
 maxLevel = 0;
 computeMaxLevel(root, 0);
 return maxLevel;
 }

 public double avgPathLength () {
 if (numberElements == 0)
 return 0;
 else
 return computePathLength(root, 0) / numberElements;
 }

 public SearchTreeNode root () {
 return root;
 }

 // Internal methods

 private SearchTreeNode insertNode (SearchTreeNode node,
 Comparable item) {
 // See Listing 15.2
 }

 private SearchTreeNode deleteNode (SearchTreeNode node,
 Comparable item) {
 // See Listing 15.3
 }

 private Comparable rightMost (SearchTreeNode node) {
 if (node.right == null)
 return node.contents;
 else
 return rightMost(node.right);
 }

 private SearchTreeNode deleteRightMost (SearchTreeNode node) {
 if (node.right == null)
 return node.left;
 else {
 node.right = deleteRightMost(node.right);
 return node;
 }
 }

Page 328

 private void destroy (SearchTreeNode node) {
 // Postorder traversal that sets each node to null
 if (node != null) {
 destroy (node.left);
 destroy (node.right);
 node.contents = null;
 node = null;
 }
 }

 private double computePathLength (SearchTreeNode node,
 double pathLength) {
 if (node != null)
 return pathLength +
 computePathLength(node.left, pathLength + 1) +
 computePathLength(node.right, pathLength +1);
 else
 return 0;
 }

 private void computeMaxLevel (SearchTreeNode node, int level) {
 if (node != null) {
 computeMaxLevel(node.left, level + 1);
 computeMaxLevel(node.right, level + 1);
 if (node.right == null && node.left == null &&
 level > maxLevel)
 maxLevel = level;
 }
 }

 public static void main (String[] args) {
 BinarySearchTree myTree = new BinarySearchTree();
 myTree.add(new Double(10));
 myTree.add(new Double(12));
 myTree.add(new Double(5));
 myTree.add(new Double(7.5));
 myTree.add(new Double(15));
 myTree.add(new Double(18));
 myTree.add(new Double(16));
 myTree.add(new Double(20));
 System.out.println (''average path length = " +
 myTree.avgPathLength());
 System.out.println ("maximum level = " + myTree.maxLevel());

 for (Iterator iter = myTree.elements() ; iter.hasNext() ;) {
 System.out.println(iter.next());
 }

Page 329

 System.out.println ("Deleted 10, 15, and 16./n");
 myTree.remove (new Double(15));
 myTree.remove (new Double(16));
 myTree.remove (new Double(10));
 System.out.println (''average path length = " +
 myTree.avgPathLength());
 System.out.println ("maximum level = " + myTree.maxLevel ());

 for (Iterator iter = myTree.elements() ; iter.hasNext() ;) {
 System.out.println(iter.next());
 }
 }
}

Output of Listing 15.4

average path length = 2.125
maximum level = 4
5.0
7.5
10.0
12.0
15.0
16.0
18.0
20.0
Deleted 10, 15, and 16.

average path length = 1.4
maximum level = 3
5.0
7.5
12.0
18.0
20.0

Explanation of Listing 15.4

Class BinarySearchTree implements SearchTable and BinaryTree . From BinaryTree the queries traversePreorder,
traverseInorder, traversePostorder, maxLevel, and avgPathLength must be implemented. From SearchTable the
commands add and remove and the queries contains, get, and elements must be implemented. From Container the
command makeEmpty and the queries isEmpty and size must be implemented.

There are three protected fields defined. The root field is of type SearchTreeNode and is initialized to null. The
numberElements and maxLevel fields describe the size and depth of the tree.

Page 330

The internal methods destroy and computeMaxLevel both employ a postorder traversal to do their work. Method destroy
sets the content of each node to null as well as the node itself to null. Method computeMaxLevel sets the field maxLevel
to the current level if it is a leaf node whose current level exceeds the previous value of maxLevel.

The query contains performs an iterative descent down the tree returning true if a matchup occurs and false if the bottom
of the tree is reached.

Method main provides simple testing of selected commands and queries for the class.

15.9—
Performance of Binary Search Tree

The computational effort required to add, remove, or search for an element in a binary search tree is dependent on the
relative degree of balance in the tree. As we have seen earlier, the ACE (average comparison effort) measures this.
When a tree is optimally or near optimally balanced, the number of comparison operations for any of the above
operations is approximately equal to the maximum level in the tree. This is approximately given by (for large n):

maximum level = log 2 n, where n represents the number of nodes in the tree.

Let us consider a tree with 2,047 nodes. Since this number of nodes is equal to 211 - 1, it is possible for such a tree to be
perfectly balanced. In this case the ACE is equal to (1 + 2 ∗ 2 + 4 ∗ 3 + . . . + 210 ∗ 11)/2,047 = 10.01. This represents
the best performance possible for a tree of size 2,047 nodes (an average of about 10 comparison operations to find an
arbitrary node that is present).

The worst performance for such a tree is associated with a linked-list-type tree in which the nodes all fall linearly in
either the left or right subtree of the root. The ACE for such a worst-performance tree is:

(1 + 2 + 3 + . . . + 2,047)/2,047 = 2,047 * 2,048/2 * 2,047) = 1,024.

There is therefore approximately a ratio of 100 to 1 between the best and worst performance in a search tree with 2,047
nodes. Suppose we insert elements into a search tree with values provided by a random number generator. What is the
performance of such a random search tree?

It is easy to perform a simulation experiment that estimates the ACE of a random search tree. For a tree of 2,047 nodes
such a simulation returns an ACE of 13.6. Since for each node in a random search tree the likelihood of having subtrees
of approximately equal depth is high, it is not surprising that the ACE of such a tree is close to optimal.

15.10—
AVL Tree

In 1962 two Russian mathematicians, Adelson-Velskii and Landis, invented an important kind of search tree later named
''AVL tree" in their honor. These AVL trees are near optimally balanced and remain balanced after add and remove
operations have been applied.

Page 331

Figure 15.6.
Balance of nodes in a binary search tree.

AVL trees are sometimes referred to as ''height-balanced trees" since their definition of balance is based on the relative
heights of right and left subtrees for each node. More formally, an AVL tree is defined as follows:

A binary search tree is an AVL tree if and only if the maximum depth of the right subtree is within one of the
maximum depth of the left subtree for each node.

We define the balance of a search tree node as the maximum right depth minus the maximum left depth. Then a binary
search tree is an AVL tree if the balance of each of its nodes is -1, 0, or 1. If a single node violates this condition, the
tree in question is not an AVL tree.

Consider the tree in Figure 15.6. The values of each node are not shown and are immaterial. The balance of each node is
shown next to the node, except when its value is zero. The tree violates the AVL condition and is not an AVL tree.

Consider the AVL tree with twelve nodes shown in Figure 15.7.

We saw earlier that the optimal ACE for a tree with twelve nodes is 3.08. The ACE of the AVL tree in Figure 15.7 is
3.17, only 3 percent larger than the optimal. AVL trees are attractive because their performance is so close to optimal.

15.11—
Tree Rotation

The basis for many balanced tree algorithms, including AVL tree algorithms, is tree rotation. The operations of right
rotation and left rotation may be applied to any node of a binary search tree to restore balance to the tree.

Consider the tree given in Figure 15.8. We demonstrate how to perform a right rotation about node 25. The result is
shown in Figure 15.9. We twist the tree clockwise at node 25.

Node 20 becomes an orphan after twisting the tree clockwise with respect to node 25. The new right child of 15 is 25. So
where does node 20 belong? It is smaller than 25 and larger than 15. It must therefore be placed to the left of 25

Page 332

Figure 15.7.
AVL tree.

as shown in Figure 15.9. The search tree property is preserved after this and all
rotations.

If we were to perform one further right rotation, this time on node 15, the tree of Figure 15.10 would result.

We consider the methods that perform right and left rotation. These are given in Listing 15.5. Each of these methods
returns a new subroot node that replaces the node that was the pivot of the rotation.

Two assignment statements that provide relinking are evident in each of the rotation methods. It is important to observe
that regardless of the size of the tree or the location of the pivot node, the algorithmic complexity associated with
rotation is constant (the cost of two relink operations).

Figure 15.8.
Binary search tree before rotation.

Page 333

Figure 15.9.
Binary search tree after rotation.

Listing 15.5 Methods For Left and Right Rotation

protected SearchTreeNode rightRotate (SearchTreeNode t) {
 SearchTreeNode returnNode;
 SearchTreeNode temp;
 temp = t;
 returnNode = t.left;
 temp.left = returnNode.right;
 returnNode.right = temp;
 return returnNode;
}

protected SearchTreeNode leftRotate (SearchTreeNode t) {
 SearchTreeNode returnNode;
 SearchTreeNode temp;
 temp = t;
 returnNode = t.right;
 temp.right = returnNode.left;
 returnNode.left = temp;
 return returnNode;
}

15.12—
AVL add

We consider the algorithm for AVL insertion. It is given as follows.

Algorithm for AVL Insertion

1. Perform an ordinary insertion into a search tree. If the resulting search tree is AVL, exit. This will be the case roughly
50 percent of the time.

2. Backtrack up the search path from the newly inserted node to the root. In this path, search for a combination of nodes
in which the parent has balance 2

Page 334

Figure 15.10.
Tree after one further rotation on node 15

(from Figure 15.9).

(or minus 2) and the child has balance 1 (or minus 1). If the signs of the balance for parent and child are the same, we
define this as a type 1 configuration, otherwise, a type 2 configuration.

3. If the configuration is type 1, perform a single rotation on the parent node in a direction to restore balance. This will
guarantee that the tree is restored to an AVL tree. Type 1 configurations occur during roughly 25 percent of insertions.

4. If the configuration is type 2, perform a rotation on the child node in a direction to restore balance with respect to this
child node immediately followed by a rotation on the parent node in the opposite direction. This sequence of two
rotations is guaranteed to restore the tree to an AVL tree. Type 2 configurations occur during roughly 25 percent of
insertions.

We illustrate the insertion algorithm with two examples. In Figures 15.11 and 15.12 we demonstrate a type 1 insertion
and in Figures 15.13, 15.14, and 15.15, a type 2 insertion.

In Figure 15.11 we insert node 3.

After performing a single right rotation using node 8 as a pivot node, we achieve an AVL tree as shown in Figure 15.12.

Figure 15.13 shows a type 2 configuration when node 5 is inserted.

To restore AVL balance we must perform a left rotation on node 4 followed by a right rotation on node 8. The results of
these two rotations are shown in Figures 15.14 and 15.15.

The coding details for method add are quite complex. This method is presented in Listing 15.6 for the interested reader
without explanation. This listing presents the details of class AVLTree. Since all the methods except add and remove are
the same as in class BinarySearchTree , class AVLTree extends class BinarySearchTree. AVLTreeNode is a class
extended from SearchTreeNode with the additional field balance.

TE
AM
FL
Y

Team-Fly®

Page 335

Figure 15.11.
Type 1 AVL configuration.

Figure 15.12.
AVL balance restored.

Figure 15.13.
Type 2 AVL configuration.

Page 336

Figure 15.14.
First of two type 2 AVL rotations.

Figure 15.15.
Second of two type 2 AVL rotations

restoring AVL balance.

Listing 15.6 Class AVLTree with Method add Implemented

/** Implementation of AVL tree.
*/
package foundations;
import java.util.*;

public class AVLTree extends BinarySearchTree {

 // Fields inherited from BinarySearchTree

 // Commands

 /** Add obj to the table; must be Comparable */
 public void add (Comparable obj) {
 if (root == null)
 root = new AVLTreeNode(obj);

Page 337

 else {
 SearchTreeNode parent = insertNode (root, null, obj);
 }
 numberElements++;
 }

 /** Remove obj from table, if found */
 public void remove (Comparable obj) {
 // Not implemented
 }

 // Internal methods and fields

 boolean stopRecursion; // For computational support only

 private SearchTreeNode insertNode (SearchTreeNode node,
 SearchTreeNode parent, Comparable item) {
 SearchTreeNode returnNode, newNode;

 if (node != null) {
 if (item.compareTo (node.contents) < 0) {
 returnNode = insertNode (node.left, node, item);
 if (!stopRecursion)
 restructureLeft(returnNode, parent, item);
 }
 else if (item.compareTo (node.contents) > 0) {
 returnNode = insertNode (node.right, node, item);
 if (!stopRecursion) {
 restructureRight(returnNode, parent, item);
 }
 }
 else if (item.compareTo(node.contents) == 0)
 throw new UnsupportedOperationException(
 ''add::obj already in AVL tree.");
 }
 else {
 stopRecursion = false;
 newNode = new AVLTreeNode (item);
 if (item.compareTo (parent.contents) < 0)
 parent.left = newNode;
 else
 parent.right = newNode;
 }
 return parent;
 }

 private void restructureLeft (SearchTreeNode returnNode,
 SearchTreeNode parent, Comparable item) {
 SearchTreeNode p1, p2, res1, res2;

Page 338

 switch (((AVLTreeNode) returnNode).balance) {
 case 1:
 ((AVLTreeNode) returnNode).balance = 0;
 stopRecursion = true;
 break;
 case 0:
 ((AVLTreeNode) returnNode).balance = -1;
 break;
 case -1:
 p1 = returnNode.left;
 if (((AVLTreeNode) p1).balance == -1) {
 ((AVLTreeNode) returnNode).balance = 0;
 res2 = rightRotate (returnNode);
 if (parent != null) {
 if (res2.contents.
 compareTo(parent.contents) < 0)
 parent.left = res2;
 else
 parent.right = res2;
 }
 else
 root = res2;
 }
 else {
 p2 = p1.right;
 if (((AVLTreeNode) p2).balance == -1)
 ((AVLTreeNode) returnNode).balance = 1;
 else
 ((AVLTreeNode) returnNode).balance = 0;
 if (((AVLTreeNode) p2).balance == 1)
 ((AVLTreeNode) p1).balance = -1;
 else
 ((AVLTreeNode) p1).balance = 0;
 res1 = leftRotate (p1);
 ptreturnNode.left = res1;
 ptres2 = rightRotate (returnNode);
 ptif (parent != null) {
 if (res2.contents.
 compareTo (parent.contents) < 0)
 parent.left = res2;
 else
 parent.right = res2;
 }
 else
 root = res2;
 }
 ((AVLTreeNode) res2).balance =0;

Page 339

 stopRecursion = true;
 break;
 }
 }

 private void restructureRight (SearchTreeNode returnNode,
 SearchTreeNode parent, Comparable item) {
 SearchTreeNode p1, p2, res1, res2;
 switch (((AVLTreeNode) returnNode).balance) {
 case -1:
 ((AVLTreeNode) returnNode).balance = 0;
 stopRecursion = true;
 break;
 case 0:
 ((AVLTreeNode) returnNode).balance = 1;
 break;
 case 1:
 p1 = returnNode.right;
 if (((AVLTreeNode) p1).balance == 1) {
 ((AVLTreeNode) returnNode).balance = 0;
 res2 = leftRotate (returnNode);
 if (parent != null) {
 if (res2.contents.
 compareTo(parent.contents) < 0)
 parent.left = res2;
 else
 parent.right = res2;
 }
 else
 root = res2;
 }
 else {
 p2 = p1.left;
 if (((AVLTreeNode) p2).balance == 1)
 ((AVLTreeNode) returnNode).balance = -1;
 else
 ((AVLTreeNode) returnNode).balance = 0;
 if (((AVLTreeNode) p2).balance == -1)
 ((AVLTreeNode) p1).balance = 1;
 else
 ((AVLTreeNode) p1).balance = 0;
 res1 = rightRotate (p1);
 returnNode.right = res1;
 res2 = leftRotate (returnNode);
 if (parent != null) {
 if (res2.contents.
 compareTo(parent.contents) < 0)

Page 340

 parent.left = res2;
 else
 parent.right = res2;
 }
 else
 root = res2;
 }
 ((AVLTreeNode) res2).balance = 0;
 stopRecursion = true;
 break;
 }
 }

 protected SearchTreeNode rightRotate (SearchTreeNode t) {
 // See Listing 15.15
 }

 protected SearchTreeNode leftRotate (SearchTreeNode t) {
 // See Listing 15.15
 }
}

15.13—
AVL Deletion

The algorithm for removing an element from an AVL tree is similar to the insertion algorithm. The only difference is
that rotations may be necessary at nodes along the search path from root to the initial pivot node. This is illustrated by
the example in Figure 15.16.

Figure 15.16.
AVL tree to illustrate deletion.

Page 341

Figure 15.17.
AVL tree after removing node 20.

We wish to delete node 20. After removing node 20 the tree of Figure 15.17 results.

A single right rotation pivoting on node 15 restores balance locally. But a consequence of this rotation is to bring node
12 up from level 3 to level 2, thus causing the root node to go out of balance. The tree after doing a right rotation on
node 15 is shown in Figure 15.18.

The restored AVL tree resulting from a single right rotation on node 10 is shown in Figure
15.19.

Figure 15.18.
Result of right rotation on node 15.

Page 342

Figure 15.19.
Restored AVL tree.

15.14—
Splay Tree

Splay trees are ordinary binary search trees that employ a splaying operation in the search path from root to node (node
being accessed or inserted) that causes the node to become the new root node of the tree. The resulting tree will
generally not be well balanced and in fact may be poorly balanced. But it can be shown that the amortized cost of
performing a large sequence of insert or access operations is O(n log2 n), the same as an AVL tree.

Splaying

There are two distinct mechanisms for moving an accessed node to the root position. Suppose we are accessing some
node with a parent and grandparent node.

1. If the path from grandparent to child involves a descent to the left and then to the right or a descent to the right and
then to the left (opposite directions), a zig-zag rotation is required (to be illustrated later).

2. If the path from grandparent to child involves a descent to the left and again to the left or a descent to the right and
again to the right (same direction), a zig-zig rotation is required (to be illustrated later).

Figure 15.20 illustrates the case where a zig-zag rotation is required with respect to X.

A left rotation on node P must be followed by a right rotation on node G. This produces the result shown in Figure
15.21.

Figure 15.22 shows a configuration of nodes that is suitable for zig-zig rotations on X.

A right rotation on node G must be followed by a right rotation on node P. This produces the result shown in Figure
15.23.

Since the splay operation always moves an accessed (or inserted) node to the root of the tree, this data structure is
particularly efficient in applications in which repeated access to an element occurs frequently. The most frequently
accessed nodes are always near the top of a splay tree.

Page 343

Figure 15.20.
Zig-zag case for splaying.

Figure 15.21.
Splay tree after zig-zag rotations.

Figure 15.22.
Splay tree configuration for zig-zig rotations.

Page 344

Figure 15.23.
Splay tree after zig-zig rotations.

15.15—
Implementation of Class SplayTree

Listing 15.7 presents the details of class SplayTree.

Listing 15.7 Class SplayTree

/** Implementation of splay tree
*/
package foundations;
import java.util.*;

public class SplayTree extends BinarySearchTree {

 // Commands

 /** Add obj to the table; must be Comparable */
 public void add (Comparable obj) {
 super.add(obj);
 touch(obj); // Defined below
 }

 // Queries

 /** Return true if the table contains obj */
 public boolean has (Comparable obj) {
 if (this.maxLevel() >= 2)
 touch(obj);
 return super.contains(obj);
 }

 // Internal methods and fields
 private SearchTreeNode [] info;

TE
AM
FL
Y

Team-Fly®

Page 345

 private char [] direction;
 private int infoIndex = 0;

 private void touch (Comparable obj) {
 info = new SearchTreeNode [numberElements];
 direction = new char [numberElements];
 infoIndex = 0;
 SearchTreeNode current = root;
 info[0] = current;
 boolean found = false;
 while (current != null && !found) {
 if (obj.compareTo(current.contents) == 0) {
 found = true;
 }
 else {
 if (obj.compareTo(current.contents) < 0) {
 current = current.left;
 direction[infoIndex] = 'L';
 info[++infoIndex] = current;
 }
 else {
 current = current.right;
 direction[infoIndex] = 'R';
 info[++infoIndex] = current;
 }
 }
 }
 if (found)
 splay(root);
 }

 private void splay (SearchTreeNode node) {
 SearchTreeNode temp;
 while (infoIndex >= 2) {
 if (direction[infoIndex - 1] == direction[infoIndex - 2]) {
 // zig-zig
 if (direction[infoIndex - 1] == 'R') {
 temp = leftRotate(info[infoIndex - 2]);
 if (infoIndex > 2) {
 if (direction[infoIndex - 3] == 'R')
 info[infoIndex - 3].right = temp;
 else
 info[infoIndex - 3].left = temp;
 }
 else
 root = temp;
 temp = leftRotate(info[infoIndex - 1]);
 if (infoIndex > 2) {

Page 346

 if (direction[infoIndex - 3] == 'R')
 info[infoIndex - 3].right = temp;
 else
 info[infoIndex - 3].left = temp;
 }
 else
 root = temp;

 }
 else {
 temp = rightRotate(info[infoIndex - 2]);
 if (infoIndex > 2) {
 if (direction[infoIndex - 3] == 'R')
 info[infoIndex - 3].right = temp;
 else
 info[infoIndex - 3].left = temp;
 }
 else
 root = temp;
 temp = rightRotate(info[infoIndex - 1]);
 if (infoIndex > 2) {
 if (direction[infoIndex - 3] == 'R')
 info[infoIndex - 3].right = temp;
 else
 info[infoIndex - 3].left = temp;
 }
 else
 root = temp;
 }
 }
 else { // zig-zag
 if (direction[infoIndex - 2] == 'R') {
 temp = rightRotate(info[infoIndex - 1]);
 info[infoIndex - 2].right = temp;
 temp = leftRotate(info[infoIndex - 2]);
 if (infoIndex > 2) {
 if (direction[infoIndex - 3] == 'R')
 info[infoIndex - 3].right = temp;
 else
 info[infoIndex - 3].left = temp;
 }
 else
 root = temp;

 }
 else {
 temp = leftRotate(info[infoIndex - 1]);

Page 347

 info[infoIndex - 2].left = temp;
 temp = rightRotate(info[infoIndex - 2]);
 if (infoIndex > 2) {
 if (direction[infoIndex - 3] == 'R')
 info[infoIndex - 3].right = temp;
 else
 info[infoIndex - 3].left = temp;
 }
 else
 root = temp;
 }
 }
 infoIndex -= 2;
 }
 if (infoIndex ==1)
 if (direction[0] == 'R')
 root = leftRotate(info[0]);
 else
 root = rightRotate(info[0]);
 }

 protected SearchTreeNode rightRotate (SearchTreeNode t) {
 SearchTreeNode returnNode;
 SearchTreeNode temp;
 temp = t;
 returnNode = t.left;
 temp.left = returnNode.right;
 returnNode.right = temp;
 return returnNode;
 }

 protected SearchTreeNode leftRotate (SearchTreeNode t) {
 SearchTreeNode returnNode;
 SearchTreeNode temp;
 temp = t;
 returnNode = t.right;
 temp.right = returnNode.left;
 returnNode.left = temp;
 return returnNode;
 }
}

Explanation of Listing 15.7

1. Class SplayTree, like class AVLTree, extends class
BinarySearchTree .

2. Two internal arrays, info and direction, are used to store the nodes and directions of descent in the search path from
the root to the node being accessed.

Page 348

3. Method touch , invoked by the query has and the command add, loads the arrays info and direction with search path
information.

4. The query has replaces the parent query contains . This is essential because contains is used in add and remove (in
class BinarySearchTree) and we do not wish splaying to be activated each time contains is invoked.

5. The private method splay uses the info and direction arrays to determine whether zig-zig or zig-zag rotations are
needed. The while loop moves up the tree starting at the accessed node two levels with each iteration until the top of the
tree is reached.

The reader should study the details of method splay and verify that it works.

15.16—
Skip List

Skip lists are a relatively recent invention designed by W. Pugh.1 They represent a creative way to utilize lists to
implement the search table abstraction. Even though this chapter is titled ''Search Trees," we examine the skip list
structure because it is quite interesting and represents an alternative to AVL trees because of the high performance of a
skip list.

A sequence of linked lists is maintained. The list at the bottom holds all the information. The list directly above the
bottom list holds roughly half the data, the list above it roughly one -quarter of the data, and so on. The exact elements
held at each level are determined probabilistically from the level directly below.

More formally, a skip list structure contains a series of lists {L 1, L 2, . . . , L t}. Each list L i stores a subset of the items in
list L i+1. The items in L i are nondecreasing and always contain a first item that is -∞ and a last item that is ∞. Figure
15.24 shows a skip list.

Lt is the top list; L 1 is the bottom list.

We add an item to list L 1 first. By flipping a virtual coin (using a random number generator), we determine whether the
item is added to list L 2. If it is (say when the coin comes up heads), we determine whether the item is also added to list L3

(with another "heads"). We continue this process until we reach the top list, Lt. The probability of the item being added
to all the lists would be (1/2) t where t represents the number of lists. This schema leads to the observation made earlier
that as one moves up the lists from L 1, each higher list has roughly 1/2 the number of elements as the list directly below
it.

Because of the skip list structure, the computational complexity associated with searching the list is high. The search
process begins at the top list through a series of scan and drop operations. This is best illustrated with a diagram. See the
skip list in Figure 15.24.

Suppose we wish to search for element 30. Since 30 is not in the top list (list 6), we drop to the list directly below it (list
5). We scan to the right until the element we are searching for exceeds an element in list 5. We drop to list 4. We again

1 Pugh, W., "Skip lists: a probabilistic alternative to balanced trees," Communications of the ACM, Vol. 35, pp. 668–676,
1990.

Page 349

Figure 15.24.
Skip list.

scan to the right, this time encountering item 30 in list 4. Our search process required two comparison operations
compared to the four comparison operations that would have been required if we had used an ordered list structure.

Suppose we wish to search for element 40. From list 6 we drop down to list 5. Since 40 is greater than 15, we drop down
to list 4 (through the node that contains 15). We scan list 4 discovering that 40 is greater than 30. We drop (through the
node containing 30) down to list 3, then list 2, and finally list 1 where we find element 40. This time the search effort is
the same as a linear search.

15.17—
Implementation of Skip List

Listing 15.8 presents an implementation of class SkipList.

Listing 15.8 Class SkipList

/**
 * Implementation of Skip List without duplicates.
 * This is a dynamic implementation.
 * The size is specified upon construction to determine the number
 * of levels, which remains fixed.
*/
package foundations;
import java.util.*;

public class SkipList implements SearchTable {

 // Fields
 private int numberElements;

Page 350

 private int levels;
 private int capacity;
 private Node start;
 private Random rnd = new Random();
 private int [] numValues;

 // Constructor
 public SkipList (int capacity) {
 // Build skeletal structure of list
 this.capacity = capacity;
 levels = (int) (1.75 * Math.log(capacity));
 numValues = new int[levels + 1];
 start = new Node(new SmallestComparable(), null, null);
 Node below1 = start;
 Node below2 = new Node(new LargestComparable(), null, null);
 below1.after = below2;
 Node above1, above2;
 // Build vertical towers down to level 1
 for (int index = levels - 1; index > = 1; index-) {
 above1 = below1;
 above2 = below2;
 below1 = new Node(new SmallestComparable(), null, null);
 below2 = new Node(new LargestComparable(), null, null);
 below1.after = below2;
 above1.down = below1;
 above2.down = below2;
 }
 numberElements = 0;
 for (int i = 1; i <= levels; i++)
 numValues[i] = 2;
 // Warm up random number generator
 for (int i = 0; i < 10000; i++)
 rnd.nextBoolean();
 }

 // Commands

 /** Remove all objects from the table if found
 */
 public void makeEmpty () {
 levels = (int) (1.75 * Math.log(capacity));
 numValues = new int[levels + 1];
 start = new Node(new SmallestComparable(), null, null);
 Node below1 = start;
 Node below2 = new Node(new LargestComparable(), below1, null);
 below1.after = below2;
 Node above1, above2;

Page 351

 // Build vertical towers down to level 1
 for (int index = levels - 1; index >= 1; index--) {
 above1 = below1;
 above2 = below2;
 below1 = new Node(new SmallestComparable(), null, null);
 below2 = new Node(new LargestComparable(), null, null);
 below1.after = below2;
 above1.down = below1;
 above2.down = below2;
 }
 numberElements = 0;
 for (int i = 1; i <= levels; i++)
 numValues[i] = 2;
 }

 /** Add obj to the table; must be Comparable */
 public void add (Comparable obj) {
 int index = levels;
 Node current = start;
 Node previous = current;
 Node newNode = null;
 Node aboveLevel = null;
 // Determine the level up to which the new insertion will rise
 int riseTo = 1;
 while (head())
 riseTo++;
 do {
 // Scan to the right as long as node's content < obj
 while (current.contents.compareTo(obj) < 0) {
 previous = current;
 current = current.after;
 }
 if (index <= riseTo) { // Perform insertion at this level
 newNode = new Node(obj, previous.after, null);
 numValues[index]++;
 previous.after = newNode;
 if (aboveLevel != null)
 aboveLevel.down = newNode;
 aboveLevel = newNode;
 }
 current = previous;
 index--;
 current = current.down;
 previous = current;
 }
 while (index >= 1 && current != null);
 numberElements++;
 }

Page 352

 /** Remove obj from table, if found
 */
 public void remove (Comparable obj) {
 if (this.contains(obj)) {
 int index = levels;
 Node current = start;
 Node previous = current;
 // Scan down until the obj is found
 Node begin = start;
 do {
 current = begin;
 while (current != null &&
 current.contents.compareTo(obj) != 0) {
 previous = current;
 current = current.after;
 }
 if (current == null) {
 begin = begin.down;
 index--;
 }
 } while (current == null);
 // Drill down and remove nodes
 previous.after = current.after;
 begin = begin.down;
 while (begin != null) {
 current = begin;
 while (current.contents.compareTo(obj) != 0) {
 previous = current;
 current = current.after;
 }
 previous.after = current.after;
 begin = begin.down;
 }
 numberElements--;
 }

 }

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty () {
 return numberElements == 0;
 }

Page 353

 /** Return the number of objects in the container
 */
 public int size () {
 return numberElements;
 }

 /** Return true if the table contains obj
 */
 public boolean contains (Comparable obj) {
 int index = levels;
 Node current = start;
 Node previous = current;
 do {
 // Scan to the right as long as node's content < obj
 while (current.contents.compareTo(obj) < 0) {
 previous = current;
 current = current.after;
 }
 if (current.contents.compareTo(obj) == 0)
 return true;
 current = previous;
 index--;
 current = current.down;
 previous = current;
 }
 while (index >= 1);
 return current != null;
 }

 /** Return obj if in table
 * useful when obj is a key & returns an Association
 */
 public Comparable get (Comparable obj) {
 int index = levels;
 Node current = start;
 Node previous = current;
 do {
 // Scan to the right as long as node's content < obj
 while (current.contents.compareTo(obj) < 0) {
 previous = current;
 current = current.after;
 }
 if (current.contents.compareTo(obj) == 0)
 return current.contents;
 current = previous;
 index--;

Page 354

 current = current.down;
 previous = current;
 }
 while (index >= 1);
 return null;
 }

 public int numberLevels () {
 return levels;
 }

 public int [] numValues () {
 return numValues;
 }

 /** Return an iterator on all elements
 */
 public Iterator elements () {
 Vector v = new Vector();
 // Get node at left at level 1
 Node current = start;
 while (current.down != null)
 current = current.down;
 current = current.after;
 for (int i = 1; i <= numberElements; i++) {
 v.addElement(current.contents);
 current = current.after;
 }
 return v.iterator();
 }

 // Internal methods
 boolean head () { // Simulates fair coin
 return rnd.nextBoolean() == true;
 }

 private class Node {

 // Fields
 private Comparable contents;
 private Node after, down;

 // Constructor
 public Node (Comparable contents, Node after, Node down) {
 this.contents = contents;
 this.after = after;
 this.down = down;
 }
 }

TE
AM
FL
Y

Team-Fly®

Page 355

 private class SmallestComparable implements Comparable {
 public int compareTo(Object obj) {
 return -1;
 }
 }

 private class LargestComparable implements Comparable {
 public int compareTo (Object obj) {
 return 1;
 }
 }
}

Explanation of Listing 15.8

Class SkipList implements SearchTable.

There are six fields that define the state of a skip list. These include numberElements, levels, capacity, start (the Node
with value -∞ at the top level), rnd (a random number generator), and numValues (an array that holds the number of
elements at each level).

The constructor takes a capacity as input and uses it to determine the number oflevels. This capacity input does not
restrict the actual number of elements added to the skip list. It just provides a basis for setting the number of levels. The
value 1.75 ∗ log(capacity) provides a good approximation of how many levels are needed so that there will be
approximately one element at the highest level. Using a for loop, the skeletal structure of the skip list is constructed. The
contents of every node must be of type Comparable . This includes the elements that must represent -∞ and ∞.

How can we provide surrogates for -∞ and ∞ and make them Comparable? We create two small inner classes,
SmallestComparable and LargestComparable, with the following:

private class SmallestComparable implements Comparable {
 public int compareTo(Object obj) {
 return -1;
 }
}

private class LargestComparable implements Comparable {
 public int compareTo(Object obj) {
 return 1;
 }
}

The first of these classes defines compareTo so that it always returns -1. The second of these classes defines compareTo
so that it always returns 1.

Page 356

In the constructor for SkipList we assign new SmallestComparable() to all the left column nodes and new
LargestComparable() to all the right column nodes.

A third inner class, Node, provides links after and down to enable scanning through a list and dropping to the next lower
list.

Method add first determines the level to which the inserted new item will rise. A do while loop performs the ordered
linked-list insertion.

Method remove scans each list, starting at the top list, until the element being removed is located. It then drills down
removing all occurrences of the node that need to be removed.

Methods contains and get follow a similar logic starting at the top list and scanning until the element being sought is
found or is greater than some list element. This is repeated until the element being sought is found.

The query elements defines a local Vector object and loads it with all the elements obtained from the bottom list. It then
returns the iterator object associated with this Vector.

A probabilistic analysis of the skip list structure (beyond the scope of these notes) reveals that search time is of O(log 2
n).

15.18—
Putting It All Together

This chapter has examined four implementations of a search table : binary search tree, AVL tree, splay tree, and skip list.
The last three of these attempt to provide for fast search, add, and remove operations.

The relationship among these classes is shown in the UML diagram of Figure 15.25.

Another GUI tree laboratory application has been written. This application enables the user to visualize binary search
tree, AVL tree, and splay tree add and remove operations (method remove is not implemented for AVLTree). As the user
specifies integer-valued elements, a display panel shows the actual tree representation for small -sized trees (thirty nodes
or fewer). The tree laboratory also allows the performance of AVL trees and skip lists to be compared. It allows the
ACE and maximum level of binary search trees, AVL trees, and splay trees to be compared.

Several screen shots from the application in progress are shown in the next several figures. Figure 15.26 shows the
results of two experiments. Random AVL trees, BSTs (binary search trees), and splay trees are constructed using the
same random values and their average path length and max level are compared. The AVL tree clearly is the winner. The
second experiment generates an AVL tree and skip list from the same values – 10,000 random values in this case. The
times to construct and then access each of its nodes are compared for the two data structures. The skip list is the winner
(almost a tie). Considering the relative simplicity of the skip list structure, it is quite amazing that it does so well.

The tree shown in Figure 15.27 results from the sequential insertion of 100, 50, 200, 150, 250, and 175. Figure 15.28
shows the tree after element 200 is removed.

Page 357

Figure 15.25.
UML diagram.

Figure 15.26.
Two experiments using the tree laboratory.

Page 358

Figure 15.27.
Binary search tree.

Figure 15.28.
Binary search tree after removing 200.

Page 359

Figure 15.29.
AVL tree.

After the ''Reset" button is clicked, the AVL tree is chosen from the combo box and the constructor invoked.

Figure 15.29 shows the tree resulting from the sequential insertion of 10, 20, 30, and 40.

The addition of element 35 produces (after a type 2 rotation) the tree shown in Figure 15.30.

Finally, if the user clicks "Reset" and chooses "Splay Tree" and then adds elements 10, 20, 30, and 40 the tree shown in
Figure 15.31 is obtained.

The reader is encouraged to experiment with the tree laboratory.

15.19—
Reusable Class DrawTree

In the screen shots taken from the tree laboratory in the previous section there are several tree structures painted in a
panel component and integrated into the user interface. This helps the user visualize the tree structures that are
constructed.

A reusable component, DrawTree, was designed for this purpose. This component was also used to render the
expression trees presented in the previous chapter and may be used to render any binary tree.

Page 360

Figure 15.30.
AVL tree after the insertion of 35.

Figure 15.31.
Splay tree.

Page 361

The constructor for class DrawTree is given as follows:

public DrawTree (SearchTreeNode root, int size, JPanel panel,
 Color color, int labelSize) {
 // Details not shown here
}

The user must send the root node of the tree to be rendered, the size of the tree, a JPanel component that captures the
drawing, the color to be used for the nodes, and links between nodes and the font size for the node labels. All of the
logic for drawing such a tree onto the panel is encapsulated in class DrawTree. This is in the spirit of object-oriented
software construction in which a class performs a specialized activity – tree drawing in this case – letting the application
programmer focus on other aspects of his or her application.

The details of class DrawTree are presented in Listing 15.9.

Listing 15.9 Class DrawTree

/** Produces a JPanel containing a binary tree
*/
package foundations;
import javax.swing.*;
import java.awt.*;

public class DrawTree {

 // Fields

 private int size;
 private SearchTreeNode [] nodes;
 private int [] levels;
 private int nodesIndex = -1;
 private final int diameter = 10;
 private JPanel panel;
 private Color color;
 private SearchTreeNode root;
 private int labelSize;

 // Constructor

 public DrawTree (SearchTreeNode root, int size, JPanel panel,
 Color color, int labelSize) {
 this.color = color;
 this.root = root;

Page 362

 this.panel = panel;
 this.size = size;
 this.labelSize = labelSize;
 color = Color.red;
 if (root != null)
 constructTree();
 }

 // Commands

 public void update (SearchTreeNode root, int size) {
 clearPanel ();
 this.root = root;
 this.size = size;
 constructTree();
 }

 public void clearPanel () {
 Graphics g = panel.getGraphics();
 g.setColor(panel.getBackground());;
 g.drawRect(panel.getVisibleRect().getBounds().x,
 panel.getVisibleRect().getBounds().y,
 panel.getVisibleRect().getBounds().width,
 panel.getVisibleRect().getBounds().height);
 g.fillRect(panel.getVisibleRect().getBounds().x,
 panel.getVisibleRect().getBounds().y,
 panel.getVisibleRect().getBounds().width,
 panel.getVisibleRect().getBounds().height);
 }

 // Internal methods
 private void build (SearchTreeNode n, int level) {
 if (n != null) {
 build(n. left, level + 1);
 nodesIndex++;
 nodes[nodesIndex] = n;
 levels[nodesIndex] = level;
 build(n.right, level + 1);
 }
 }

 private void drawLineSegment (Point pt1, Point pt2) {
 Graphics g = panel.getGraphics();
 g.setColor(color);
 g.drawLine(pt1.x + diameter / 2, pt1.y + diameter / 2,
 pt2.x + diameter / 2, pt2.y + diameter / 2);
 }

Page 363

 private int index (SearchTreeNode n) {
 for (int i = 0; i < size; i++)
 if (nodes[i] == n)
 return i;
 return -1;
 }

 private void drawNode (Point pt, String str) {
 Graphics g = panel.getGraphics();
 g.setColor(color);
 g.drawOval(pt.x, pt.y, diameter, diameter);
 g.fillOval(pt.x, pt.y, diameter, diameter);
 g.setColor(Color.black);
 g.setFont(new Font (''Times Roman", Font.PLAIN, 9));
 String drawStr = (str.length() > labelSize) ?
 str.substring
(0, labelSize) : str;
 g.drawString(drawStr, pt.x, pt.y);
 }

 private void constructTree () {
 nodesIndex = -1;
 nodes = new SearchTreeNode[size];
 levels = new int[size];
 build(root, 1);
 for (int index = 0; index < size; index++) {
 drawNode(new Point(index * 20, levels[index] * 20),
 nodes[index].contents.toString());
 if (nodes[index].left != null) {
 SearchTreeNode left = nodes[index].left;
 int indexLeft = index (left);
 drawLineSegment(new Point(index * 20,
 levels[index] * 20),
 new Point(indexLeft * 20, levels[indexLeft] * 20));
 }
 if (nodes[index].right != null) {
 SearchTreeNode right = nodes[index].right;
 int indexRight = index (right);
 drawLineSegment(new Point(index * 20,
 levels[index] * 20),
 new Point(indexRight * 20,
 levels[indexRight] * 20));
 }
 }
 }
}

Page 364

Explanation of Listing 15.9

The private (internal) method build uses an in-order traversal to load up two array fields, nodes and levels . The private
method constructTree uses the information in the arrays nodes and levels to draw the nodes and links. The horizontal
position of each node is proportional to the index in which the node is stored in the nodes array and the vertical position
of the node is held in the levels array.

The private methods drawLine and drawNode use the graphic context of the panel component that is input to place their
pixels onto this graphics context.

Method constructTree iterates through all the nodes stored in the nodes field and draws links to their left and right
children, if any.

15.20—
Summary

• This chapter has presented the details of four SearchTable implementations: BinarySearchTree, AVLTree, SplayTree,
and SkipList.

• The BinarySearchTree performs well only if the tree is relatively balanced.

• The AVLTree, SplayTree , and SkipList perform efficiently regardless of the data that are added to these structures.

• The performance of all binary tree types is dependent on the degree of balance in the tree.

• An AVL tree is always nearly optimally balanced.

• A splay tree has an amortized performance that is equal to O(n log 2 n).

• A skip list performs almost as well as an AVL tree.

15.21—
Exercises

1 For the binary tree shown in Figure Exercise 1:

a. Compute the average internal path length.
b. What is the sequence of nodes visited using a preorder traversal?
c. What is the sequence of nodes visited using a in-order traversal?
d. What is the sequence of nodes visited using a postorder traversal?
e. Sketch the tree that results if node 70 is deleted from the tree.
f. Sketch the tree that results if node 90 is deleted from the original tree.

To answer questions 2, 3, 4, and 5 you will need to create a new class, SpecialBinarySearchTree, that extends
BinarySearchTree and is in package foundations . Create your SpecialBinarySearchTree in a subdirectory
foundations . You must run your new class from the directory just outside foundations using java
foundations.SpecialBinarySearchTree . The answers to Exercises 2, 3, 4, and 5 will be contained in the single file
SpecialBinarySearchTree.java.

Include a function main() in your SpecialBinarySearchTree class that tests each of the functions designed in
Exercises 2, 3, 4, and 5.

TE
AM
FL
Y

Team-Fly®

Page 365

Figure Exercise 1.

2 Implement a query int level (Comparable item) in class SpecialBinarySearchTree that returns the level of an item in
the SpecialBinarySearchTree. The root node is defined as having level 0.

3 Implement a query boolean isPerfectlyBalanced () in class SpecialBinarySearchTree that returns true if the search
tree is perfectly balanced and otherwise returns false.

4 Implement a query boolean isAVL () in class SpecialBinarySearchTree that returns true if the search tree is an AVL
tree and otherwise returns false .

5 Implement a query int minimumDepth () in class SpecialBinarySearchTree that returns the level of the leaf node
whose level is closest to the root level.

6 Construct an experiment that confirms that the amortized cost of inserting nodes into a splay tree is logarithmically
related to the number of nodes.

7 Revise the implementation of class SkipList so that each node points backwards and upwards in addition to pointing to
the right and downwards. Test your new implementation.

8 Can you deduce any relationship between the postorder traversal of a binary tree and the preorder traversal of its
mirror image?

Page 366

9 Find all the binary trees such that the preorder and postorder traversals visit the nodes in exactly the same order.

10 Do the leaf nodes in a binary tree occur in the same order for preorder, inorder, and postorder traversals? If so, justify
your contention.

11 Explain, prove, or justify that if we are given the preorder and postorder traversals of a binary tree, the binary tree
structure may be constructed.

Page 367

16—
Hashing and Sets

Hash tables are containers that represent a collection of objects inserted at computed index locations. Each object
inserted in the hash table is associated with a hash index. The process of hashing involves the computation of an integer
index (the hash index) for a given object (such as a string). If designed properly, the hash computation (1) should be fast,
and (2) when done repeatedly for a set of keys to be inserted in a hash table should produce hash indices uniformly
distributed across the range of index values for the hash table. The term ''hashing" is derived from the observation that
there should be little if any obvious association between the object being inserted and its hash index. Two closely related
objects such as the strings "time" and "lime" should generally produce unrelated hash indices. Thus hashing involves
distributing objects into what appears to be random (but reproducible) locations in the table.

When two distinct objects produce the same hash index, we refer to this as a collision. Clearly the two objects cannot be
placed at the same index location in the table. A collision resolution algorithm must be designed to place the second
object at a location distinct from the first when their hash indices are identical.

The two fundamental problems associated with the construction of hash tables are:

1. the design of an efficient hash function that distributes the index values of inserted objects uniformly across the table

2. the design of an efficient collision resolution algorithm that computes an alternative index for an object whose hash
index corresponds to an object previously inserted in the hash table

We shall consider each of these problems in this chapter.

The standard Java package java.util provides an efficiently designed and robust Hashtable class and an approximately
equivalent HashMap class. We shall explore class Hashtable in this chapter. We also examine the Set abstraction and its
implementation in this chapter.

16.1—
Hashing and Collision Resolution

Although any kind of object may be put into hash tables we shall focus on objects of type String. Most standard Java
classes provide a hashCode() query function

Page 368

that returns an int for a given instance of the class. The hashCode() value may be used to determine the index location
for insertion of an object in a hash table. In the event of a collision, the final destination of the object (index location)
must be determined using a collision resolution algorithm, as indicated earlier.

Can one build a perfect hash function in which a unique index value may be associated with an arbitrary string? The
answer is yes in theory, but no in practice.

Suppose one maps each character of a string to an integer using the conversion:

Other special characters such as apostrophes may be assigned additional numbers. As an example, suppose that there are
twenty-seven possible values, one for each character (e.g., letters map to 1 . . . 26 and interior apostrophe maps to 27).
Let us consider the hash value for a string of length 10. The perfect hash function would be:

hashIndex = word [0] + word [1] * 27 + word [2] * 272 + word [3] * 273

 + word [4] * 274 + word [5] * 275 + word [6] * 276

 + word [7] * 277 + word [8] * 278 + word [9] * 279

In the worst case, when every character maps to the value 27, the index range would go up to:

For strings of length greater than 10 the index range would be even greater. It is therefore impractical to build a perfect
hash function for strings of arbitrary length. It must also be recalled that the string itself must be stored in the table. The
memory requirements for this are overwhelming!

In a practical hash table, only a limited number of strings can be stored. If English words are being stored, only a
fraction of all possible words (over one million have been identified) can fit in memory and be available for fast access.
A typical hash function will produce collisions when building such a table.

A hash table, like all containers, has a given size. This represents the actual number of objects stored in the table. The
ratio of a hash table's size to its capacity is defined as the load factor of the hash table. That is, load factor =
size/capacity .

If each object in a hash table is associated with a unique hash index (and this is unlikely in practice), it would take only
one comparison operation to determine whether a specified object were present or not present in the hash table. The hash
index would be computed for the object and the object would be compared to the contents of the table at the hash index
location. The object would either be present or not present. Because of collisions it is often the case that two or

Page 369

more comparison operations must be performed before determining whether a specified object is present or not present
in a hash table. We define the number of comparison operations required to determine the presence of a specified object
as the number of probes . We can compute the average number of probes for a given hash table. This is a measure of
the efficiency of the table – smaller values indicate a higher efficiency. The ACE statistic for a binary search tree
(average comparison effort) discussed in Chapter 15 is a similar measure of search efficiency for a container. The
smaller the value of ACE or average number of probes, the faster the average access time.

We shall compare the performance of hash tables with balanced binary trees later.

16.2—
Bit Operations

Before continuing with our discussion of hashing and collision resolution, we review the Java language's support for
low-level bit operations.

The BitSet class stores a sequence of bits. It is actually an array of bits. The key operations of class BitSet are:

// Constructor
BitSet (int nbits)

// Commands
void set (int bit) // sets the bit to true (on = 1)
void clear (int bit) // sets the bit to false (off = 0)
void and (BitSet other) // logically AND receiver bit set with other
void or (BitSet other) // logically OR receiver bit set with other
void xor (BitSet other) // logically XOR receiver bit set with other

// Queries
boolean get (int bit) // return true if the bit is on
 // otherwise return false

We illustrate the use of bit sets in producing prime numbers. Suppose we wish to compute all the prime numbers
between 2 and 1,000,000. One algorithm for computing prime numbers uses the Sieve of Eratosthenes. It efficiently
eliminates all numbers in the desired range that are integer multiples of potential prime numbers. By starting at the
lowest numbers, only the prime numbers remain.

We first define a bit set that can hold 1,000,000 bits. Next we turn off (set to false) all the bits that are multiples of
numbers known to be prime using the Sieve of Eratosthenes. When completed, the indexed bits that remain on (have a
true value) after this process are themselves the prime numbers.

Listing 16.1 presents the details of a class called Primes that implements this algorithm, computes primes up to
1,000,000, and displays on the console the prime numbers up to 5,000.

Page 370

Listing 16.1 Sieve of Eratosthenes Using Class BitSet

/** An application program that computes the prime numbers from 2 to
* one million using bit sets and the Sieve of Eratosthenes algorithm.
* Prime numbers are output to the console up to the value printTo.
*/
import java.util.*;

public class Primes {
 private final static int SIZE = 1000000;
 private final static int printTo = 5000;

 // Commands
 public void computePrimes () {
 BitSet b = new BitSet (SIZE);
 int count = 0;
 int i;

 // Set all the bits from 2 to 1,000,000
 for (i = 2; i < SIZE; i++)
 b.set (i);

 // eliminate (turn off) multiples of prime numbers
 i = 2; // start with smallest prime number
 while (i * i < SIZE) {
 if (b.get(i)) {
 count++;
 int k = 2 * i;
 while (k <= SIZE) {
 b.clear (k);
 k += i;
 }
 }
 i++;
 }

 // Display results
 for (i = 2, count = 0; i < SIZE; i++)
 if (b.get (i)) {
 if (i <= printTo)
 System.out.print (i + '' ");
 count++;
 }
 System.out.println ("\nNumber of primes between 2 and "
 + SIZE + " = " + count);
 }

Page 371

 public static void main (String[] args) {
 Primes app = new Primes();
 app.computePrimes();
 }
}

Let us walk through this algorithm.

The initial bit set, indexed from 0 to SIZE - 1, looks like:

(0, 0, 0, 1, . . . , 1, 1, 1).

In the first while loop, since b.get (2) returns true, we assign k the value 4. We clear bits 4, 6, 8, 10 . . . from the bit set
(integer multiples of 2). The bit set now looks like:

(0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, . . .).

Now the variable i is incremented to 3. Since this bit is on, we assign k the value 6. We clear 6, 9, 12, 15, . . . from the
bit set (integer multiples of 3). The bit set looks like:

(0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0 . . .).

Now the variable i is incremented to 4 and then to 5, since bit 4 is cleared. We assign k the value 10 and clear bits in
positions 10, 15, 20, 25, This pattern continues until we have reached the square root of SIZE. Why can we safely
stop at this point?

The output of Listing 16.1 is not shown because of its length.

16.3—
Perfect Hash Function

Suppose that we wish to map any English word of five characters or less to a unique index value (in an array). We can
accomplish this using the following hash function:

hashIndex = word [0] + word [1] * 27 + word [2] * 272 + word [3] * 273

 + word [4] * 274

The largest index possible would be 27 ∗ (1 + 27 + 272 + 27 3 + 27 4) = 14,900,787. Listing 16.2 presents the details of
this hash function in a class called PerfectHash .

The hash indices of several words are given in the following table after applying the perfect hash function:

Word Hash index

disk 230611

drive 3097282

car 13152

cars 387129

Page 372

Listing 16.2 Class PerfectHash

/** A perfect hash function for words of five characters or less.
*/
import java.util.*;

public class PerfectHash {

 private BitSet data = new BitSet (14900787);

 private int convert (char ch) {
 if (ch >= 'a' && ch <= 'z')
 return ch - 'a' + 1;
 else if (ch == '\'')
 return 27;
 else
 return 0;
 }

 // Commands

 public void insert (String word) {
 if (word.trim().length() <= 5)
 data.set (hashIndex (word));
 }

 // Queries

 public int hashIndex (String word) {
 if (word.trim().length() <= 5) {
 String str = word.toLowerCase().trim();
 int sum = convert (str.charAt (0));
 int multiplier = 27;
 for (int index = 1; index < str.length(); index++) {
 sum += convert (str.charAt (index)) * multiplier;
 multiplier *= 27;
 }
 return sum;
 }
 else
 return -1;
 }

 public boolean contains (String word) {
 return data.get(hashIndex (word));
 }
}

Page 373

16.4—
Collisions

In the previous section a perfect hash function was defined, one that associates a unique index with every word. The
problem is that it works only for words with length equal to or less than five characters.

In this section we investigate the occurrence of collisions. To do this we hash 109,580 distinct English words and count
the number of collisions using arrays of increasing size to hold the string values. We use the predefined query hashCode
() for class String in the Java 2 Platform to hash the words in file distinct.txt. Query hashCode() is good but not perfect;
therefore, we should expect some collisions.

This file of distinct words, distinct.txt, has the following properties:

Properties of File distinct.txt

Number of words of length 1 = 1
Number of words of length 2 = 140
Number of words of length 3 = 853
Number of words of length 4 = 3129
Number of words of length 5 = 6918
Number of words of length 6 = 11492
Number of words of length 7 = 16881
Number of words of length 8 = 19461
Number of words of length 9 = 16694
Number of words of length 10 = 11882
Number of words of length 11 = 8374
Number of words of length 12 = 5812
Number of words of length 13 = 3677
Number of words of length 14 = 2101
Number of words of length 15 = 1159
Number of words of length 16 = 583
Number of words of length 17 = 229
Number of words of length 18 = 107
Number of words of length 19 = 39
Number of words of length 20 = 29
Number of words of length 21 = 11
Number of words of length 22 = 4
Number of words of length 23 = 2
Number of words of length 24 = 0
Number of words of length 25 = 1
Number of words of length 26 = 0
Number of words of length 27 = 0
Number of words of length 28 = 1
Number of words of length 29 = 0
Number of words of length 30 = 0

Total number of words = 109580

Listing 16.3 shows the details of this experiment. Collisions are computed for the 109,580 words when hashed into
tables of different sizes, ranging from

Page 374

SIZE = 10,980 to 10 ∗ SIZE. It is expected that the number of collisions goes down as hash table size increases (i.e., the
load factor goes down). Of course, increased size (decreased load factor) wastes space in the table.

Listing 16.3 Collision Experiment

/** An application that determines the number of collisions among
* 109,580 distinct words using the hashCode() function of class
* String and tables of increasing size.
*/
import java.io.*;

public class CollisionExperiment {

 // Fields
 private final int NUMBER_WORDS = 109580;
 String [] table;

 public void computeCollisions () {
 int hashIndex = 0;
 try {
 System.out.println (''Size\t\t\tCollisions");
 for (int size = NUMBER_WORDS; size <= 10 * NUMBER_WORDS;
 size += NUMBER_WORDS) {
 table = new String[size];
 BufferedReader diskInput = new BufferedReader (
 new InputStreamReader (
 new FileInputStream (
 new File("distinct.txt"))));
 // Insert each line of disk input file into hash table
 int collisions = 0;
 String line = diskInput.readLine();
 while (line != null && line.length() > 0) {
 hashIndex = Math.abs(line.hashCode()) % size;
 if (table[hashIndex] == null)
 table[hashIndex] = line;
 else
 collisions++;
 line = diskInput.readLine();
 }
 System.out.println (size + "\t\t\t" + collisions);
 }
 }
 catch (Exception ex) {}
 }

TE
AM
FL
Y

Team-Fly®

Page 375

 static public void main (String[] args) {
 CollisionExperiment app = new CollisionExperiment();
 app.computeCollisions();
 }
}

The output from Listing 16.3 is the following:

Size Collisions

109580 40309

219160 23422

328740 16538

438320 12627

547900 10264

657480 8740

767060 7500

876640 6568

986220 5964

1095800 5310

The number of collisions decreases as the size of the table increases.

16.5—
Class Hashtable

In this section we examine the standard Java class Hashtable provided in package java.util. The skeletal structure of
parts of class Hashtable is given in Listing 16.4.

Listing 16.4 Skeletal Structure of Portions of Class Hashtable

/** Skeletal structure of portions of class Hashtable
*/

public class Hashtable {

 // Constructors
 public Hashtable () {
 /* Constructs a new empty hashtable with a default capacity and
 load factor that is 0.75.
 */
 . . .
 }

 public Hashtable (int initialCapacity) {
 /* Constructs a new empty hashtable with the specified initial
 capacity and default load factor.
 */
 . . .
 }

Page 376

 public Hashtable (int initialCapacity, float loadFactor) {
 /* Constructs a new empty hashtable with the specified initial
 capacity and the specified load factor.
 */
 . . .
 }

 // Commands

 /** Empties hashtable
 */
 public void clear () { . . . }

 /** Maps the specified key to the specified value in the table.
 */
 public put (Object key, Object value) { . . . }

 /** Removes the key and its corresponding value from the table.
 */
 public remove (Object key) { . . . }

 // Queries

 /** Returns the number of keys in the table.
 */
 public int size () { . . . }

 /** Returns true if the specified object is a key in the table.
 */
 public boolean containsKey (Object key) { . . . }

 /** Returns true if the table maps one or more keys to this value.
 */
 public boolean containsValue (Object value) { . . . }

 /** Returns the value to which the specified key is mapped in the
 * table.
 */
 public Object get (Object key) { . . . }

 /** Returns an enumeration of the values in the table.
 */
 Enumeration elements () { . . .}

 /** Returns an enumeration of the keys in this hashtable.
 */
 public Enumeration keys () { . . . }
}

Page 377

If the number of objects stored in the table exceeds the capacity multiplied by the load factor, the table is dynamically
increased in size. This ensures that the specified load factor is never exceeded.

We now perform another experiment whose goal is to determine the speed of information access using class Hashtable .
We load the same set of 109,580 distinct English words into a Hashtable , which uses the hashCode() method from class
String to determine the index in the table to store each word. We then output the time that it takes to search the
constructed hash table for all the words that have been inserted into the table. Listing 16.5 shows the details of this
experiment.

Class Hashtable stores associations and computes the table index by hashing the key. Thus the hash.put(line, line)
statement in Listing 16.5 simply lets the word serve as both key and value.

Listing 16.5 Experiment to Determine the Speed of Class Hashtable

/** Application to determine the speed of Hashtable.
*/
import java.io.*;
import java.util.*;
import java.text.*;

public class HashTest {

 // Internal fields
 private final int SIZE = 109580;
 private int count = 0;
 private long elapsedTime = 0L;
 private Hashtable hash;

 public void perfomTest () throws Exception {
 long elapsedTime = 0L;
 long startTime, endTime;
 DecimalFormat df = new DecimalFormat(''0.##");
 BufferedReader diskInput;
 String line;
 hash = new Hashtable(250000);
 diskInput = new BufferedReader (new InputStreamReader (
 new FileInputStream (
 new File ("distinct.txt"))));
 // Insert each line of disk input file into hash table
 line = diskInput.readLine();

 while (line != null) {
 hash.put(line, line);
 line = diskInput.readLine();
 }
 System.out.println ("hash.size() = " + hash.size());

Page 378

 System.out.println ("Checking words against hash table");
 elapsedTime = 0;
 diskInput = new BufferedReader (new InputStreamReader (
 new FileInputStream (
 new File (''distinct.txt"))));
 line = diskInput.readLine();
 while (line != null) {
 startTime = System.currentTimeMillis();
 if (hash.containsKey(line))
 count++;
 endTime = System.currentTimeMillis();
 elapsedTime += endTime - startTime;
 line = diskInput.readLine();
 }
 System.out.println ("Words found in hash table = " + count);
 System.out.println ("Words checked per second = " +
 (int) (count * 1000.0 / elapsedTime) +
 " words per second.");
 }

 public static void main (String[] args) throws Exception {
 HashTest app = new HashTest();
 app.performTest();
 }
}

Typical output from Listing 16.5 is the following:

hash.size() = 109580
Checking hash table words against hash table
Words found in hash table = 109580
Correctly spelled words checked per second = 608777 words
 per second.

These results were obtained using a Pentium-III PC with 256 MB RAM, running at 500 MHz, under Windows NT. The
hashCode() algorithm is fast!

16.6—
Collision Resolution

We shall examine two algorithms for collision resolution, linear chaining and coalesced chaining . Both provide
collision resolution within the space allocated for the hash table. A third type of collision resolution called separate
chaining builds linked lists of objects that hash to the same index. Separate chaining avoids the problem of overlapping
chains (to be described in the next section) at the expense of requiring that extra memory be allocated for each collision.
Separate chaining is used in standard class Hashtable . Coalesced chaining is more complex but significantly more
efficient than linear chaining. In this section we explore the details of linear chaining and coalesced chaining.

Page 379

Figure 16.1.
Linear chaining.

16.6.1—
Linear Chaining

Linear chaining involves sequentially searching the hash table for an empty location if the initial location given by the
hash index is occupied by another word. The sequential search starts at the hash index for the given word. When the
highest index location in the table is reached, the search continues by wrapping to the lowest index location in the table.
As long as there is at least one empty index location in the hash table, this process eventually terminates. For high load
factors the collision resolution chains begin to overlap, adding even more time required to find an object in the table.

Figure 16.1 shows a word that ends up three index locations to the right of its initial destination because of linear
chaining collision resolution.

Algorithm for Word Insertion Using Linear Chaining

1. Obtain hash index for word .

2. If table at hash index is empty, insert the word at this location.

3. If the table at the hash index is occupied with a different word, sequentially increment the index until the word is
encountered or an empty index location is found.

4. If the loop in step 3 terminates because of an empty index location, insert the word at this empty location.

The number of probes associated with the insertion of a word using linear chaining is equal to the number of index
locations touched before the word is inserted. For the insertion shown in Figure 16.1, the number of probes equals 4.

When a hash table is relatively empty, the likelihood of a collision is small. As the load factor increases (ratio of the
number of words to the capacity of the table), the likelihood of a collision increases. Collisions force sequential chains
of words to be formed. As collision chains get substantial in size, the likelihood of them getting even larger increases.
This is based on the assumption that a good hash function produces hash indices that are uniformly distributed across the
hash table. A large collision chain presents a bigger target than an isolated word. The big get bigger! Chains eventually
overlap making the problem even worse.

At high load factors when many collision chains have formed, the average number of probes required to search for a
word in the table using linear chaining increases significantly.

Page 380

The algorithm for searching for a word in the hash table using linear chaining is the following:

Algorithm for Word Access Using Linear Chaining

1. Obtain hash index for word .

2. If table at hash index is empty, word is not

3. If the table at the hash index is occupied with a different word, sequentially increment the index until the word is
found or an empty index location is found .

4. If the loop in step 3 terminates because of an empty index location, the word is not in the table .

We next examine the effect that load factor has on the performance of a hash table using linear chaining. We use the
average number of probes as a measure of the table's efficiency. To accomplish this we design a simulation experiment
that uses a uniformly distributed random index to simulate a good hash function. As virtual words are added at random
index locations we keep track of the number of probes required for each insertion. At the end we output the average
number of probes. Listing 16.6 provides the details of our simulation experiment.

Listing 16.6 Efficiency of Linear Chaining versus Load Factor: A Simulation

/** An application that simulates the performance of linear chaining.
*/
import java.text.*;
import java.util.*;

public class LinearChainingApp {

 // Fields
 int probes;
 boolean [] words = new boolean [1000]; // Holds virtual words
 Random rnd = new Random();
 int count;

 public void generateTable (double loadFactor) {
 // Empty the table
 for (int i = 0; i < 1000; i++)
 words[i] = false;
 count = (int) (1000 * loadFactor);
 probes = 0;
 for (int i = 0; i < count; i++) {
 int hashIndex = rnd.nextInt(1000);
 while (words[hashIndex] == true) {
 hashIndex++;
 probes++;

Page 381

 if (hashIndex == 1000)
 hashIndex = 0;
 }
 words[hashIndex] = true;
 probes++;
 }
 }

 static public void main (String[] args) {
 DecimalFormat df = new DecimalFormat(''#.00");
 LinearChainingApp app = new LinearChainingApp();
 System.out.println (
 "Load Factor\t\t\tAverage Number of Probes");
 for (double lf = 0.1; lf <= 0.9; lf += 0.1) {
 app.generateTable(lf);
 System.out.println(df.format(lf) + "\t\t\t\t" +
 df.format((double) app.probes / app.count));
 }

 for (double lf = 0.91; lf < 1.0; lf += 0.01) {
 app.generateTable(lf);
 System.out.println(df.format(lf) + "\t\t\t\t" +
 df.format((double) app.probes / app.count));
 }
 }
}

The output of the simulation in Listing 16.6 for linear chaining is:

Load Factor Average Number of Probes

.10 1.06

.20 1.16

.30 1.24

.40 1.36

.50 1.45

.60 1.84

.70 3.02

.80 2.67

.90 4.16

.91 5.35

.92 4.87

.93 6.98

.94 7.33

.95 9.88

.96 11.59

.97 9.66

.98 12.80

.99 20.12

Page 382

For load factors up to 0.6, the performance of the table is relatively independent of the number of words in the table.
Above this load factor the performance starts to degrade and above a load factor of 0.8 degrades rapidly.

A balanced binary search tree with 1,000 nodes has an ACE (average comparison effort) of about 9. That is, it would
take an average of approximately 9 comparison operations to locate an arbitrary object in the search tree. This is
approximately equivalent to a hash table using linear chaining at a load factor of 0.95. If the load factor is controlled and
kept moderate, say under 0.6, the expected performance of a hash table is approximately four times faster than a
balanced binary search tree. This improvement in performance applies to insertion and searching.

16.6.2—
Coalesced Chaining

Coalesced chaining attempts to forestall the buildup of long collision chains (contiguous sequences of words) by
maintaining a collision resolution index (CRI) that is not correlated to the current hash index. This CRI is initialized to
''point" to the highest "available" index in the table. Each time a collision occurs, the word is placed at the CRI location
if the location is unoccupied. If the location is occupied, the CRI is sequentially reduced by 1 until an empty location is
found. An array is maintained to store link information for later searching. Each time a collision occurs, the chain of
links (each link being an index location in the table) is followed to the end and the new location given by the CRI is
added to the collision chain.

The algorithm for coalesced chaining is presented in more detail below.

Algorithm for Coalesced Chaining

1. Initialize link array so that the value at each index location equals -1 (indicates no linking).

2. Initialize the collision resolution index (CRI) to the highest index in the hash table .

3. Obtain the hash index for the word being
inserted.

4. If the hash table is empty at the given hash index, insert the word at this index .

5. If the table is occupied with a different word at the hash index, determine whether the link array contains a value
other than -1 at the hash index. If it does, traverse the link array to find the index of the last location in the collision
chain. If the word to be inserted is found in the collision chain, abort the insertion process (duplicate words are not
allowed).

6. Determine the CRI by finding the first available location to resolve the collision, starting at the present CRI and
decrementing the CRI value sequentially until an empty location is found. At least one empty location must be available
in the hash table to assure that this loop terminates .

7. Update the link array with the CRI value and insert the word at the CRI .

To further clarify the algorithm presented above, we consider a simple example. Suppose we have a small table with
capacity 10 and index locations 0 to 9. Suppose further that we wish to insert the following 7 words represented by the
letters A,

TE
AM
FL
Y

Team-Fly®

Page 383

Figure 16.2.
Hash table and link index after insertion of words A, B, and C.

B, C, D, E, F, and G. These words have hash values given in the following table:

Word Hash Index

A 4

B 7

C 9

D 7

E 6

F 7

G 4

The situation after words A, B, and C have been inserted is shown in Figure 16.2.

Now consider the insertion of word D. Its hash index equals 7. Since this location is occupied, coalesced-chaining
collision resolution must be brought into action. Since the link array at index 7 holds the value -1, there is no collision
chain to traverse. The CRI is decremented until an empty location is found. This is location 8. The word D is inserted at
index 8 and the value 8 is inserted in the link array at index 7 (indicating that from location 7 one must go to location 8
to find word D). The word E is inserted directly at index 6 (its hash index) since that location is empty.

Now we consider the insertion of word F whose hash index equals 7. This location is occupied. The link value at index 7
is 8 (from the insertion of word D). The CRI is decremented to 5, the first empty index. The link index is not changed.
The situation after word F is inserted is shown in Figure 16.3.

Figure 16.3.
Hash table and link index after insertion of words A, B, C, D, E, and F.

Page 384

Figure 16.4.
Hash table and link index after all words have been inserted.

Finally, we consider the insertion of word G. Since index 4 is occupied we go to the collision chain, if any, at index 4
(from the link array). There is no collision chain yet formed. The CRI is decremented to index 3, the first empty
location. The final hash table with all 7 words is shown in Figure 16.4.

It is interesting to determine the average number of probes for a hash table that uses coalesced chaining and compare the
results to those of linear chaining. Because the collision resolution index is not correlated to the hash index, we would
expect better average performance. The results are surprising and quite dramatic.

Listing 16.7 shows the details of this simulation experiment with the results shown below the listing.

Listing 16.7 Efficiency of Linear Chaining versus Load Factor: A Simulation

/** Simulating the performance of coalesced chaining.
*/
import java.text.*;
import java.util.*;

public class CoalescedChainingApp {

 // Fields
 final int SIZE = 1000;
 int probes;
 boolean [] words = new boolean [SIZE];
 int [] link = new int [SIZE];
 Random rnd = new Random();
 int count;
 int cri; // collision resolution index

 // Commands

 public void generateTable (double loadFactor) {
 // Empty the table
 for (int i = 0; i < SIZE; i++)
 words[i] = false;

Page 385

 // Reset the link array
 for (int i = 0; i < SIZE; i++)
 link[i] = -1;
 cri = SIZE - 1;
 count = (int) (SIZE * loadFactor);
 probes = 0;

 for (int i = 0; i < count; i++) {
 int hashIndex = rnd.nextInt(SIZE);
 if (words[hashIndex] == false) {
 words[hashIndex] = true;
 probes++;
 }
 else { // collision resolution required
 // Scan to end of collision chain
 int index = hashIndex;
 while (link[index] != -1) {
 probes++;
 index = link[index];
 }
 // Find cri
 while (words[cri] == true)
 cri--;
 words[cri] = true;
 link[index] = cri;
 probes++;
 }
 }
 }

 static public void main (String[] args) {
 DecimalFormat df = new DecimalFormat(''#.00");
 CoalescedChainingApp app = new CoalescedChainingApp();
 System.out.println (
 "Load Factor\t\t\tAverage Number of Probes");
 for (double lf = 0.1; lf <= 0.9; lf += 0.1) {
 app.generateTable(lf);
 System.out.println(df.format(lf) + "\t\t\t\t" +
 df.format
((double) app.probes / app.count));
 }
 for (double lf = 0.91; lf <= 1.0; lf += 0.01) {
 app.generateTable(lf);
 System.out.println(df.format(lf) + "\t\t\t\t" +
 df.format
((double) app.probes / app.count));
 }
 }
}

Page 386

The results for coalesced chaining, shown below, are remarkable. Even when the load factor is 99 percent, the average
number of probes is close to one. When comparing these results to those of linear chaining in Listing 16.6, it is clear that
coalesced chaining is significantly better. Coalesced chaining is an ''in-place" version of separate chaining.

Output of Listing 16.7 for Coalesced Chaining

Load Factor Average Number of Probes

.10 1.00

.20 1.01

.30 1.00

.40 1.03

.50 1.04

.60 1.12

.70 1.17

.80 1.14

.90 1.18

.91 1.19

.92 1.19

.93 1.21

.94 1.37

.95 1.27

.96 1.28

.97 1.25

.98 1.25

.99 1.34

16.7—
Set

The Set abstraction is specified by the interface Set repeated from Chapter 10 in Listing 16.8. Interface Set provides a
minimal set of commands and queries for the Set abstract data type.

Listing 16.8 Interface Set

/** Interface Set
*/
package foundations;

public interface Set extends Container {

 // Commands

 /** Add obj to the set
 */
 public void add(Object obj);

Page 387

 /** Remove obj from the set
 */
 public void remove(Object obj);

 // Queries

 /** Return the union of self with s
 */
 public Set union(Set s);

 /** Return intersection of receiver with s
 */
 public Set intersection(Set s);

 /** Return difference of receiver with s
 */
 public Set difference(Set s);

 /** Return true if receiver is a subset of s
 */
 public boolean subset(Set s);

 /** return true if obj is in the set
 */
 public boolean contains(Object obj);
}

A set is a container that does not allow duplicates and provides fast access to information. In addition to the usual
container operations (makeEmpty, isEmpty , and size from Container plus new methods add, remove, and contains), a Set
supports the binary operations of union, intersection, difference, and subset. These are formulated as queries since they
return information and leave the state of the receiver object intact.

We shall employ the standard class BitSet described in Section 16.2, to implement Set. We call this class BSet because of
the internal dependence on BitSet. Listing 16.9 presents the implementation of BSet.

Listing 16.9 Class BSet

/** A bit set implementation of Set.
*/
package foundations;
import java.util.*;

public class BSet implements Set {

 // Fields

Page 388

 private BitSet data;
 private int capacity;

 // Constructors

 public Bset (int capacity) {
 data = new BitSet (capacity);
 this.capacity = capacity;
 }

 public Bset (BitSet b) {
 data = b;
 this.capacity = b.size();
 }

 // Commands

 /** Remove all objects from the container if found
 */
 public void makeEmpty () {
 for (int i = 0; i < capacity; i++)
 data.clear(i);
 }

 /** Add obj to the set
 */
 public void add (Object obj) {
 data.set(Math.abs(obj.hashCode()) % capacity);
 }

 /** Remove obj from the set
 */
 public void remove (Object obj) {
 data.clear(Math.abs(obj.hashCode()) % capacity);
 }

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty () {
 for (int i = 0; i < capacity; i++)
 if (data.get(i)) {
 return false
 break;
 }
 return true;
 }

Page 389

 /** Return the number of objects in the container
 */
 public int size () {
 int count = 0;
 for (int i = 0; i < capacity; i++)
 if (data.get(i))
 count++;
 return count;
 }

 /** Return the union of self with s */
 public Set union (Set s) {
 BitSet local = new BitSet(capacity);
 for (int i = 0; i < capacity; i++)
 if (data.get(i) || ((BSet) s).data.get(i))
 local.set(i);
 return new BSet(local);
 }

 /** Return intersection of receiver with s
 */
 public Set intersection (Set s) {
 BitSet local = new BitSet(capacity);
 for (int i = 0; i < capacity; i++)
 if (data.get(i) && ((BSet) s).data.get(i))
 local.set(i);
 return new BSet(local);
 }

 /** Return difference of receiver with s
 */ public Set difference (Set s) {
 BitSet local = new BitSet(capacity);
 for (int i = 0; i < capacity; i++)
 if (data.get(i) && !((BSet) s).data.get(i))
 local.set(i);
 return new BSet(local);
 }

 /** Return true if receiver is a subset of s
 */
 public boolean subset (Set s) {
 BSet testSet = (BSet) this.intersection(s);
 // Compare testSet and this
 boolean returnValue = true;
 for (int i = 0; i < capacity; i++)
 if (data.get(i) != testSet.data.get(i)) {
 returnValue = false;

Page 390

 break;
 }
 return returnValue;
 }

 /** Return true if obj is in the set
 */
 public boolean contains (Object obj) {
 return data.get (Math.abs(obj.hashCode()) % capacity);
 }

 public static void main (String[] args) {
 Set s = new BSet(10000000);

 s.add (new Integer(5));
 s.add (new Integer(17));
 s.add (new Integer(2317));
 s.add (new Integer(9876543));
 if (s.contains (new Integer(5)))
 System.out.println (''5 is present");
 else
 System.out.println ("5 is not present");
 if (s.contains(new Integer(17)))
 System.out.println ("17 is present");
 else
 System.out.println ("17 is not present");
 if (s.contains (new Integer(2317)))
 System.out.println ("2317 is present");
 else
 System.out.println ("2317 is not present");
 if (s.contains (new Integer(2318)))
 System.out.println ("2318 is present");
 else
 System.out.println ("2318 is not present");
 if (s.contains (new Integer(9876543)))
 System.out.println ("9876543 is present");
 else
 System.out.println ("9876543 is not present");
 if (s.contains (new Integer(9876544)))
 System.out.println ("9876544 is present");
 else
 System.out.println ("9876544 is not present");
 s.remove(new Integer(2317));
 if (s.contains (new Integer(2317)))
 System.out.println ("2317 is present");
 else
 System.out.println ("2317 is not present");

Page 391

 Set t = new BSet(10000000);
 t.add(new Integer(5));
 t.add(new Integer(17));
 t.add(new Integer(18));
 t.add(''Hello");
 t.add("World");
 Set u = t.union(s);
 Set i = t.intersection(s);
 System.out.println("s.size() = " + s.size());
 System.out.println("t.size() = " + t.size());
 System.out.println("u.size() = " + u.size());
 System.out.println("i.size() = " + i.size());

 if (s.subset(u))
 System.out.println("s is a subset of u");
 else
 System.out.println("s is not a subset of u");

 if (s.subset(i))
 System.out.println("s is a subset of i");
 else
 System.out.println("s is not a subset of i");

 Set d = u.difference(s);
 if (d.contains("Hello"))
 System.out.println("d contains Hello");
 else
 System.out.println("d does not contain Hello");
 System.out.println("The size of set d = " + d.size());
 }
}

The Output for Listing 16.8 Is:

5 is present
17 is present
2317 is present
2318 is not present
9876543 is present
9876544 is not present
2317 is not present
s.size() = 3
t.size() = 5
u.size() = 6
i.size() = 2
s is a subset of u
s is not a subset of i

TE
AM
FL
Y

Team-Fly®

Query isEmpty scans data returning true if all bit locations have value false. Query size scans data returning the number
of bit locations that have value true . Query union takes the logical ''or" operator "||" of each bit location of the receiver's
data and the data of the input and returns a new BSet built from the "or'ed" data. Query intersection works the same way
using the "and" operator "&&". The analysis of the remaining queries is left as an exercise for the reader. Query isEmpty
scans data returning true if all bit locations have value false. Query size scans data returning the number of bit locations
that have value true . Query union takes the logical ’’or" operator "||" of each bit location of the receiver's data and the
data of the input and returns a new BSet built from the "or'ed" data. Query intersection works the same way using the
"and" operator "&&". The analysis of the remaining queries is left as an exercise for the reader. Query isEmpty scans
data returning true if all bit locations have value false. Query size scans data returning the number of bit locations that
have value true. Query union takes the logical ‘‘or" operator "||" of each bit location of the receiver's data and the data of
the input and returns a new BSet built from the "or'ed" data. Query intersection works the same way using the "and"
operator "&&". The analysis of the remaining queries is left as an exercise for the reader. Query isEmpty scans data
returning true if all bit locations have value false. Query size scans data returning the number of bit locations that have
value true . Query union takes the logical ''or" operator "||" of each bit location of the receiver's data and the data of the
input and returns a new BSet built from the "or'ed" data. Query intersection works the same way using the "and" operator
"&&". The analysis of the remaining queries is left as an exercise for the reader.

Page 392

d contains Hello
The size of set d = 3

Explanation of Listing 16.8

Two private fields are provided: data of type BitSet and capacity (type int). The two constructors that are provided
initialize the data and capacity fields.

The command makeEmpty sends the clear() message to each bit in data. The command add enables the bit (sets its value
to true) at the location given by the absolute value of the hashCode() applied to the object being put in the BSet .
Command remove works the same way using clear() instead of set() to remove the bit.

Query isEmpty scans data returning true if all bit locations have value false. Query size scans data returning the number
of bit locations that have value true . Query union takes the logical "or" operator "||" of each bit location of the receiver's
data and the data of the input and returns a new BSet built from the "or'ed" data. Query intersection works the same way
using the "and" operator "&&". The analysis of the remaining queries is left as an exercise for the reader.

It is important to construct a SetLab GUI application that allows each of the commands and queries to be fully exercised
and tested. This is left as an exercise for the reader.

16.8—
Summary

Hash tables and sets are containers and share the common property that duplicates are not allowed. Hashing may be used
in the implementation of a set. Major points made about hashing and sets are:

• Hashing is the process of calculating an integer index to represent an object. This object may then be stored in a hash
table at the hashed index. The ratio of objects in a hash table to its capacity is called its "load factor."

• A perfect hashing operation produces a unique index for all objects it hashes: The index is uniformly distributed over
the range of indices in the hash table. A hash table with a perfect hashing function can theoretically have a load factor of
one.

• The craft of designing hash functions falls far short of the ideal hashing function desired. As a result, practical hashing
functions sometimes cause collisions.

• A collision occurs when two different objects hash to the same index. Reducing the load factor of a hash table may
reduce the relative frequency of collisions.

• There are several algorithms for resolving collisions. These include linear chaining, coalesced chaining, and separate
chaining among others.

• The ideal performance of a hash table is O(1). This performance is degraded because of collisions and the need to
resolve those collisions.

• Coalesced chaining provides better performance than linear chaining.

• Sets are containers that do not allow duplicates. Set-specific operations include union, intersection, and difference (plus
potentially others).

Page 393

• A BitSet is a representation of a set wherein elements are represented by a unique index into an array of bits (possibly
through hashing). The value of the bit indicates absence (value = 0) or presence (value = 1) of the element.

16.9—
Exercises

1 For the words (total of 109,580) in file distinct.txt (found in the Chapter 16 folder in the downloadable notes), you are
to build a test class that examines the relative uniformity of the hashCode() method of class String.

a. Calculate the range, mean, and standard deviation for the distribution of raw hash codes.

b. Repeat for rescaling the raw hash codes to fit within a hash table of sizes from 0.1x to 1.0x in steps of 0.1x,
where x = 109,580.

c. Repeat for rescaling the raw hash codes to fit within a hash table of sizes from 1.0x to 10.0x in steps of 1.0x,
where x = 109,580.

d. For parts a., b., and c. plot histograms of the resulting hash codes. Use a bin size of 1 percent (resulting in 100
bins) for each scale used.

2 Another collision resolution scheme called double hashing computes two hash indices for each object. One index is
the primary hash index. If a collision occurs, the second hash index is added as an increment to the first until an empty
location is found. Implement and test an algorithm for double hashing using the words in distinct.txt. Use various load
factors as was done for linear chaining in Listing 16.6. Compare your results with those obtained for linear chaining and
coalesced chaining.

3 The collision resolution scheme called separate chaining uses a hash table of linear lists. Collisions are resolved by
adding each object to the list in its appropriate hashed index location in the hash table. Implement and test, using the
words in distinct.txt, a separate chaining resolution scheme. Describe in detail the design you use for the hash table.
Compare your results with those obtained from other collision resolution schemes. Use various initial load factors as was
done for linear chaining in Listing 16.6. Calculate and compare the actual load factor after the tables are built with the
initial load factor.

4 Develop logic for the number of probes for ''unsuccessful" searches in a hash table using the model introduced in
Listing 16.6 for "successful" search. Unsuccessful search is defined as the process of deciding, based on searching the
table, that an element is not in the table. It is a given condition that the element being sought is not in the table. The key
is determining when a search of the table confirms that fact. Perform this experiment for two or more of the collision
resolution schemes with various load factors. A really interesting project computes the average number of probes for
successful and unsuccessful search, for all collision resolution schemes, and for a wide range of load factors. For extra
credit, the projects should be UI-based and plot the "average number of probes versus load factor" curves for all
variations on success versus nonsuccess and collision resolution schemes. Think of this as

Page 394

a hashing laboratory. Additional details are given
below.

Project Details:

a. Write a class called CollisionResolution that does the following:

• For load factors of 0.25, 0.50, 0.75, 0.85, 0.90, and 0.95, build hash tables by simulating the actual hashing of
data values to indices in the table. Store a boolean ''true" in each hashed index. If a new datum hashes to an
index containing "true" then we have a collision. This collision is to be resolved using a collision resolution
scheme. The hashing simulation should approximate an ideal hash function, that is, provide a uniformly
distributed set of indices over the table (there is still a possibility of collisions).

• Calculate the average number of probes for the following three collision resolution schemes: linear chaining,
double hashing as described in Exercise 2, and coalesced chaining.

• Display the results of all experiments in tabular form.

• Plot (using whatever means) the average number of probes versus the load factor for all experiments on the
same graph (3 resolution schemes – successful versus unsuccessful = 6 curves). Choose an appropriate scale to
make the graph easily readable.

b. Guidelines and hints/suggestions

• Use three hash tables, one for each collision resolution scheme.

• The hash tables may be reinitialized and reused for each load factor.

• Compute the average number of probes for successful search while building the hash tables (see Listing 16.6
for hints).

• Compute the average number of probes for unsuccessful search after the tables are built.

5 Provide an analysis of all methods in class BSet in Listing 16.8.

6 Design, develop, and implement a set laboratory that provides interactive testing of all commands and queries in
implementing classes for interface Set. The laboratory should include hooks for implementing class BSet and one other
class called SetE . Test the laboratory using the provided implementation of class BSet in package foundations .

Page 395

17—
Association and Dictionary

We are all familiar with the concept of a dictionary as a fairly large book containing words and definitions. The words
are always in alphabetical order to help us look up a particular word. Having the words in alphabetical order is a
convenient feature but is not required. There may be other ways to find words in the dictionary, especially if our
dictionary is in electronic form. Most words in a dictionary have several definitions. We associate each word with its
definitions. Thus, we may characterize a dictionary as a container (possibly ordered) of associations between words and
their meanings.

To take our reasoning a step further in our attempt to understand the required behavior of a dictionary, we never add
definitions to a dictionary unless they are associated with a word. On the other hand, as we are building the dictionary
we may add words without definitions on the promise that the definitions will be added later for those words. And
finally, as we fine tune our understanding, we may change definitions for words that are already in the dictionary. We
may wish to remove entries in the dictionary or access them in various ways. For example, we may wish to access a list
of the words only, the meanings only, or the entire list of entries.

In Chapter 10 we defined interface Dictionary as an extension of the Container interface, interface OrderedDictionary
as an extension of SearchTable , and supporting class Association. The relationships among Dictionary,
OrderedDictionary, Association, and other classes are illustrated in Figure 17.1. Implementing classes for Dictionary
and OrderedDictionary will use instances of Association. Queries for accessing keys, values, and elements of a
dictionary or ordered dictionary return iterators on the contained objects.

In this chapter we begin with a brief discussion of class Association and then focus on interface Dictionary and its
implementation, and on OrderedDictionary and its implementation. We present selected details for two implementations
of Dictionary plus a dictionary laboratory for testing the features of Dictionary . We also present selected details for two
implementations of OrderedDictionary and an ordered dictionary laboratory for testing the features of
OrderedDictionary.

17.1—
The Association Abstract Data Type

Associations represent pairs of objects called keys and values. There is a one-to-one correspondence between a key and
its value . Associations have internal state

Page 396

Figure 17.1.
Interfaces Dictionary and OrderedDictionary and class Associations .

and behavior as specified by class Association . The instance variable key is essential for creation of an instance of
Association. The instance variable value may initially be null. The class definition for Association is repeated in Listing
17.1 from Chapter 10.

The requirement that a key be assigned on creation of an instance of Association is enforced by not providing a null
parameter constructor. The one -parameter constructor creates an instance with a specified key and assigns null to value .
The two-parameter constructor creates an instance of Association and initializes both key and value . Once an instance is
created, its key cannot be changed (it is immutable).

The single command, setValue(Object value), allows one to set or change the value after an instance has been created.
The two constructors and the single command are consistent with the above described behavior and rules for creating
instances of Association.

Listing 17.1 Class Association

/** Class Association
* An instance must initialize a key on creation.
* If used as a comparable Association, keys must be comparable and
* comparison is based on keys only.
* Note that equals() does not enforce the comparable feature and
* requires equality of both key and value.
*/
package foundations;
import java.io.Serializable;

Page 397

public class Association extends Object
 implements Comparable, Serializable {
 // Fields

 private Object key;
 private Object value;

 // Constructors

 /** Create an instance with specified key and null value
 */
 public Association (Object key) {
 this(key, null);
 }

 /** Create an instance with specified key and value
 */
 public Association (Object key, Object value) {
 this.key = key;
 this.value = value;
 }

 // Commands

 /** Set the value
 */
 public void setValue (Object value) {
 this.value = value;
 }

 // Queries

 /** return key
 */
 public Object key () {
 return key;
 }

 /** Return value
 */
 public Object value () {
 return value;
 }

 /** Return a String representation.
 * Return a String of the form <key:value>
 */

Page 398

 public String toString () {
 return ''<" + key + ":" + value + ">" ;
 }

 /** Implement Comparable method compareTo
 * Compare based only on key; key must be Comparable
 */
 public int compareTo (Object obj) {
 return ((Comparable)key).compareTo(((Association)obj).key());
 }

 /** Override inherited Object method equals()
 */
 public boolean equals (Object obj) {
 if (obj instanceof Association)
 return (key.equals(((Association)obj).key)
 && value.equals(((Association)obj).value));
 else
 return false;
 }

 /** Override inherited Object method hashCode().
 * Return a unique int representing this object
 */
 public int hashCode () {
 int bits1 = key.hashCode();
 int bits2 = value.hashCode();
 return (bits1 << 8) ^ (bits2 >> 8);
 }
}

Further Discussion of Listing 17.1

Fields key and value represent the internal state of an association. These two fields have private visibility to enforce the
intended behavior of instances of the class, even for potential subclasses of Association and other classes in the
foundations package.

The class has six queries, two for accessing the fields, three that are inherited from Object and overridden, and one
promised by implementing interface Comparable . The default implementations for toString, equals, and hashCode in
class Object are redefined to apply specifically to instances of Association. We want a special string representation for
showing association instances. For example, if key = CS2 and value = A second course in computer science, then
toString returns the following string:

<CS2:A second course in computer science>

Page 399

The equals(Object obj) method returns true if the key and value of the receiver are equal to the key and value of the
parameter obj. The algorithm for hashCode is designed to include features of both the key and the value . The compareTo
query returns the result of applying compareTo to the keys of the receiver and parameter associations. The class for key
must implement Comparable . By implementing compareTo using only the key, we enable the ability to find an instance
when only its key is known. This feature is important for implementations of interface SearchTable covered in earlier
chapters and in this chapter for implementers of interface OrderedDictionary.

The one-to-one relationship between key and value may appear to imply that this class does not represent our familiar
dictionary, with multiple definitions for any word. However, value may be any object, including an array, thus allowing
multiple definitions for each key.

17.2—
The Dictionary Interface

In Listing 17.2 we again present interface Dictionary . It adds three commands (addKey(Object key, Object value),
removeKey(Object key), and changeValue(Object key, Object value)) and six queries (containsKey(Object key),
valueFor(Object key), containsValue(Object value), elements(), keys(), and values()) to enhance those inherited from
Container . Notice that the parameters are instances of Object.

Listing 17.2 Interface Dictionary

/** Interface Dictionary
* A dictionary contains instances of Association: key-value pairs
* A class for a key must implement equals() from class Object
*/
package foundations;
import java.util.*;

public interface Dictionary extends Container {

 // Commands

 /** Add an association <key-value>
 * If the key already exists, set its value
 */
 public void addKey (Object key, Object value);

 /** Remove association with key if found
 */
 public void removeKey (Object key);

 /** Change value for specified key
 * Throw NoSuchElementException if key not found.
 */
 public void changeValue (Object key, Object value);

Page 400

 // Queries

 /** Return true if key is in dictionary
 */
 public boolean containsKey (Object key);

 /** Return value for specified key
 * Throw NoSuchElementException if key not found
 */
 public Object valueFor (Object key);

 /** Return true if the dictionary contains obj as a value
 */
 public boolean containsValue (Object value);

 /** Return iterator over the entries - Associations
 */
 public Iterator elements ();

 /** Return iterator over all keys
 */
 public Iterator keys ();

 /** Return iterator over all values
 */
 public Iterator values ();
}

The complete behavior of a dictionary includes commands and queries from interface Dictionary plus those inherited
from interface Container and optionally selected methods from Object. Implementing classes must implement all these
commands and queries. An example design is illustrated in Table 17.1 for a class named ImplementsDictionary . The
inherited Container methods include command makeEmpty plus queries size and isEmpty. Interface Dictionary adds
three new commands and six new queries. The queries containsKey(Object key) and containsValue(Object value) return
a boolean based on whether parameters key or value, respectively, are contained anywhere in the dictionary. Query
valueFor(Object key) returns the value for the specified key. Three new queries return iterators on the entries
(associations), keys, or values. It is usually desirable to override the toString query from class Object.

The three queries that return iterators may optionally use an inner class to implement the Iterator interface. Two
potential constructors are shown that initialize a dictionary to some default capacity or specified capacity. Depending on
the actual class chosen for internal data representation, additional constructors or modifications to the two shown in
Table 17.1 may be required.

TE
AM
FL
Y

Team-Fly®

Page 401

Table 17.1 Public Interface Design for Implementing Classes of Dictionary

Constructors

public ImplementsDictionary() Create an empty dictionary with default
capacity.

public ImplementsDictionary(int capacity) Create an empty dictionary with
specified capacity.

Commands

public void addKey(Object key, Object value) Add <key:value> as a new association
in the dictionary; if key already present
change its value.

public void removeKey(Object key) If found, remove contained association
with specified key.

public void changeValue(Object key, Object
value)

Change value for specified key; throw
exception if key not found.

public void makeEmpty() Make the dictionary empty (from
Container).

Queries

public boolean containsKey(Object key) Return true if key is in the dictionary.

public boolean isEmpty() Return true if dictionary is empty (from
Container).

public int size() Return the number of associations (from
Container).

public Object valueFor(Object key) Return the value for specified key;
throw exception if key not found.

public boolean containsValue(Object value) Return true if value is in the dictionary.

public Iterator elements() Return an iterator on the associations in
the dictionary.

public Iterator keys() Return an iterator on the keys in the
dictionary.

public Iterator values() Return an iterator on the values in the
dictionary.

public String toString() Override from Object to return a string
giving all associations with form:
{ <key1:val1>, <key2:val2>, . . .}

Page 402

17.3—
Implementing the Dictionary Interface

The first step in designing a class that implements the Dictionary interface is to choose a data structure representing the
contained associations. There are several options including a linear dynamic list such as represented by the Java class
java.util.Vector or a hash table such as represented by the Java class java.util.Hashtable. Additionally, we may use an
implementation of the List interface defined in the Container hierarchy, or our own implementation of a hash table. A
static array may also be used but is not recommended since we would have to manage the dynamic sizing of the
dictionary.

We discussed concepts and implementations for the List interfaces in Chapter 13. Concepts and details for hashing are
discussed in Chapter 10. For now we choose to use existing classes in package java.util, Vector, and Hashtable , as two
options to represent the contained data in a dictionary.

The Vector class represents a dynamic list of objects whose order is dependent on the history of additions and removals.
It has methods including those specified for List, IndexableList, and PositionableList . We might characterize it as an
''industrial strength" list. For a vector of size n, the search performance is O(n) and on average requires n/2 steps to find
an object in the vector. It always requires n steps to determine that an object is not in the vector. The only way we can
search a vector is to start at the front and iterate over indices from 0 to size -1.

As discussed in Chapter 16, a Hashtable stores an object in a particular index of an array that is uniquely determined
from the hash code of the object. The time to find an object in a hash table is constant, given by the time to compute a
hash code (index) and check the object in that hashed index. Its performance is O(1), that is, one step independent of size
n. In a well-designed hash table this performance is approximately achievable for both successful and unsuccessful
searches.

The implementation for java.util.Hashtable requires that contained objects be instances of java.util.Map.Entry , a
conceptual equivalent of our Association class. It hashes only the key to get an index for storing the map entries. In
essence, Hashtable is an industrial strength implementation for a variation on Dictionary . Our Dictionary interface is a
somewhat simpler version of a dictionary. In using Hashtable to implement Dictionary we will be using only part of the
feature set in Hashtable .

In choosing either Vector or Hashtable as our container of associations for the Dictionary implementation, we must read
and follow any constraints imposed by these classes. Specifically of interest are the following constraints.

Constraints for Using Class Vector

1. Contains a dynamic array of instances of Object .

2. Contained objects are accessible by index or position.

3. No special constraints on the contained objects.

4. Methods specific to key or value are not handled by Vector and must be handled internally in our implementing class.

Page 403

Figure 17.2.
Class diagram for two implementations of interface Dictionary.

Constraints for Using Class Hashtable

1. Contains a dynamic array of instances of Map.Entry .

2. Map.Entry instances are similar to Association instances.

3. New objects are added using method put(Object key, Object value).

4. Neither key nor value may be null in method put(). This is a variation from our earlier discussion that Dictionary
should be able to accept commands to add an association with value = null, that is, <keyObject:null>.

5. Contained objects are accessible by a hash index on the key.

6. The class representing key must implement equals() and hashCode() from Object

We wish to develop implementations for Dictionary using both Vector and Hashtable as the containers of our
associations. These two choices will illustrate the details required in implementing Dictionary and serve as actualized
implementations for use in demonstrating the dictionary laboratory.

Figure 17.2 shows the major classes required for implementing Dictionary using HashTable and Vector.

17.3.1—
Implementation of Dictionary Using a Hashtable

Complete details are given in Listing 17.3 for the source file HashDictionary.java that uses class Hashtable to
implement data. Class HashDictionary is a Hashtable implementation of interface Dictionary . In addition to the
methods required by interfaces Container and Dictionary , method toString inherited from Object is also overridden.

Page 404

HashDictionary has three fields: (1) data, which is the contained Hashtable ; (2) KEYS; and (3) VALUES, which are int
parameters for controlling the type of iteration returned by queries keys and values. The last two are static since we need
only one copy of each. There is no direct support by Hashtable for iteration over the entries.

Three constructors are provided that take advantage of three ways to initialize the contained Hashtable . They represent
flexible options for specifying initial capacity and maximum load factor (default is 0.75). The capacity is the number of
available ''buckets" (default is 101) for storing entries. When the size of the hash table (number of entries contained)
equals capacity times load factor, the table capacity is increased (to capacity * 2 + 1) and the table is rehashed (based on
new capacity). It is wise to set an initial capacity large enough so that rehashing is not required, while not wasting
storage space. A load factor between 0.5 and 0.75 is recommended to reduce time spent in collision resolution.

The inner class HashIterator encapsulates field entries as an Enumeration (Java 1.1 version of an Iterator) since
Hashtable does not provide direct support for Iterator. The methods in HashIterator send corresponding messages to the
enumeration.

Details of method toString are shown in the listing. Since Hashtable does not support an iteration over the entries, we
must use an inefficient implementation that iterates over the keys and uses valueFor(key) to get the value. Method
valueFor(key) must iterate to find the key and then send message get(key) to the encapsulated hash table to get the value.
We could use a similar approach to implement elements.

Listing 17.3 Class HashDictionary

/** class HashDictionary - an implementation of interface Dictionary
* - uses java.util.Hashtable for data
*/
package foundations;
import java.util.*;

public class HashDictionary implements Dictionary {

 // Fields
 private Hashtable data;
 private static int KEYS = 0; // iterator control
 private static int VALUES = 1; // iterator control

 // Constructors

 /** Construct dictionary with default capacity and load factor 0.75
 */
 public HashDictionary () {
 data = new Hashtable();
 }

Page 405

 /** Construct dictionary with initialCapacity and load factor 0.75
 */
 public HashDictionary (int initialCapacity) {
 data = new Hashtable(initialCapacity);
 }

 /** Construct a dictionary with initialCapacity and loadFactor
 * Hashtable constraint: required range 0.0 < loadFactor < 1.0
 * Hashtable constraint: recommended loadFactor is 0.5 --> 0.75
 */
 public HashDictionary (int initialCapacity, float loadFactor) {
 data = new Hashtable(initialCapacity, loadFactor);
 }

 // Commands

 /** Add an association <key-value>
 * If the key already exists, set its value
 * Hashtable constraint: neither key nor value can be null
 * Hashtable constraint: if key not there add it with value
 */
 public void addKey (Object key, Object value) {
 data.put(key, value);
 }

 /** Remove association with key if found
 */
 public void removeKey (Object key) {
 data.remove(key);
 }

 /** Change value for specified key
 * Throw NoSuchElementException if key not found.
 * Hashtable constraint: no direct support
 */
 public void changeValue (Object key, Object value) {
 if (data.containsKey(key))
 data.put(key, value);
 else
 throw new NoSuchElementException(''Key not found");
 }

 /** Remove all objects from the container if found
 */
 public void makeEmpty () {
 data.clear();
 }

Page 406

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty () {
 return data.isEmpty();
 }

 /** Return the number of keys in the dictionary
 */
 public int size () {
 return data.size();
 }

 /** Answer true if obj is in the container as a value
 */
 public boolean containsValue (Object value) {
 return data.contains(value);
 }

 /** Return true if key is in dictionary
 */
 public boolean containsKey (Object key) {
 return data.containsKey(key);
 }

 /** Return value for specified key
 * Throw NoSuchElementException if key not found
 */
 public Object valueFor (Object key) {
 if (containsKey(key))
 return data.get(key);
 else
 throw new NoSuchElementException(''Key not found");
 }

 /** Return iterator over the entries - Associations
 */
 public Iterator elements () {
 return null; // not supported by Hashtable
 }

 /** Return iterator over all keys
 */
 public Iterator keys () {
 return new HashIterator(KEYS);
 }

Page 407

 /** Return iterator over all values
 */
 public Iterator values () {
 return new HashIterator(VALUES);
 }

 /** Override method toString() from class Object
 * Return in set notation all entries in the dictionary
 * Notation is: {<key1:value1>, <key2:value2>, . . .}
 */
 public String toString () {
 String str = ''{";
 Object key = null;
 if (isEmpty())
 return str + " }" ;
 else {
 try {
 for (Iterator i = new HashIterator(KEYS);
 i.hasNext();){
 key = i.next();
 str = str + " <" + key + ":"+ this.valueFor(key)
 + ">," ;
 }
 } catch (Exception ex) { }
 return str.substring(0, str.length() - 1) + " }";
 }
 }

 /** private class HashIterator implements Iterator
 */

 private class HashIterator implements Iterator {

 // Fields

 /** java.util.Hashtable does not return an Iterator
 * It returns an Enumeration on the keys or values
 */
 private Enumeration entries;
 private int type; // enumeration over keys or elements

 // Constructor

 /** Field entries iterates over keys or values
 */
 private HashIterator (int type) {
 entries = (type == KEYS) ? data.keys() : data.elements();
 this.type = type;
 }

Page 408

 // Commands

 public void remove () { // not used -
 null implementation
 }

 // Queries

 public boolean hasNext () {
 return entries.hasMoreElements();
 }

 public Object next () {
 return entries.nextElement();
 }
 }
}

Tip

Notice that the class header for HashDictionary promises to implement interface Dictionary .
Since java.util also has a Dictionary class, why do we not get a name conflict? In fact,
java.util.Dictionary is an abstract class whose use is no longer recommended; it is retained for
backward compatibility with previous versions of Java. The compiler knows that we are referring
to the foundations version of Dictionary because it is the only interface named Dictionary .
WARNING: When using the label Dictionary to represent a type (as is done in the dictionary
laboratory where we import both foundations .* and java.util.*) we must use a fully qualified
name label (e.g., foundations.Dictionary) so the compiler knows which Dictionary we are using.

Discussion of Listing 17.3

The choice of Hashtable as the contained data in HashDictionary presents some choices. The good news is that all
commands and most queries in HashDictionary are easily implemented by invoking an appropriate method in
Hashtable . However, some of these methods are slightly different than our original specification for Dictionary . Entries
in Hashtable require that both the key and value be non-null. This is a small concession in the behavior of our command
addKey(key, value) and is acceptable. The method for changing the value of a specified key in Hashtable has the same
behavior as addKey(). We must take control to ensure that our specification for changeValue() is satisfied. We do not
allow changeValue() to work unless the key parameter is already in the dictionary. New comments are added to the
source code where constraints are imposed.

Method toString() from Object is overridden to provide a custom string representation for the dictionary. It lists the key-
value pairs as elements in a set; for example,

Page 409

{ <key1:value1>, <key2:value2>, . . . }

Inner class HashIterator implements the Iterator interface in a way to provide iteration over the keys or values by
specifying int type as KEYS or VALUES. This inner class and its fields and constructors are private to strictly enforce its
supporting role for class HashDictionary. No client class may create an instance of HashIterator. Client classes do
require access to the iterator commands and queries; thus, command remove() and queries hasNext() and next() are
public. This visibility for methods is also consistent with the java.util.Iterator interface.

17.3.2—
Implementation of Dictionary Using a Vector

Selected details are given in Listing 17.4 for the source file VectorDictionary.java that uses class java.util.Vector to
implement data. Class VectorDictionary is a Vector implementation of interface Dictionary . Most of the details are left
as an exercise for the reader.

Listing 17.4 Class VectorDictionary

/** VectorDictionary implements interface Dictionary using
* java.util.Vector
*/
package foundations;
import java.util.*;

public class VectorDictionary implements Dictionary {

 // Fields
 private Vector data;
 private static int KEYS = 0; // iterator control
 private static int VALUES = 1; // iterator control
 private static int ENTRIES = 2; // iterator control
 // Constructors

 /** Construct dictionary with default capacity
 */
 public VectorDictionary () {
 // Left as an exercise
 }

 /** Construct dictionary with initialCapacity
 */
 public VectorDictionary (int initialCapacity) {
 // Left as an exercise
 }

Page 410

 // Commands

 /** Add an association <key-value>
 * If the key already exists, set its value
 */
 public void addKey (Object key, Object value) {
 // Left as an exercise
 }

 /** Remove association with key if found
 */
 public void removeKey (Object key) {
 // Left as an exercise
 }

 /** Change value for specified key
 * Throw NoSuchElementException if key not found.
 */
 public void changeValue (Object key, Object value) {
 // Left as an exercise
 }

 /** Remove all objects from the container if found
 */
 public void makeEmpty () {
 // Left as an exercise
 }

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty () {
 // Left as an exercise
 return true;
 }

 /** Return the number of keys in the dictionary
 */
 public int size () {
 // Left as an exercise
 return 0;
 }

TE
AM
FL
Y

Team-Fly®

Page 411

 /** Answer true if obj is in the container as a value
 */
 public boolean containsValue (Object value) {
 // Left as an exercise
 return false;
 }

 /** Return true if key is in dictionary
 */
 public boolean containsKey (Object key) {
 // Left as an exercise
 return false;
 }

 /** Return value for specified key
 * Throw NoSuchElementException if key not found
 */
 public Object valueFor (Object key) {
 // Left as an exercise
 return null;
 }

 /** Return iterator over entries - Associations
 */
 public Iterator elements () {
 return new VectorIterator(ENTRIES);
 }

 /** Return iterator over all keys
 */
 public Iterator keys () {
 return new VectorIterator(KEYS);
 }

 /** Return iterator over all values
 */
 public Iterator values () {
 return new VectorIterator(VALUES);
 }

 /** Override method toString() from class Object
 * Return in set notation all entries in the dictionary
 * Notation is: {<key1:value1>, <key2:value2>, . . .}
 */

Page 412

 public String toString () {
 // Left as an exercise
 return null;
 }

 /** Query - private - return entry for specified key,
 * return null if key not found
 */
 private Association entryFor (Object key) {
 // Left as an exercise
 return null;
 }

 /** private class VectorIterator implements Iterator
 * returns ENTRIES, KEYS, or VALUES based on type
 */

 private class VectorIterator implements Iterator {

 private Iterator elements;
 private int type;

 /** Field entries iterates over keys or values
 */
 private VectorIterator (int type) {
 elements = data.iterator();
 this.type = type; // iterate over keys, values, or elements
 }

 public boolean hasNext () {
 return elements.hasNext();
 }

 public Object next () {
 return (type == ENTRIES)
 ? (Association)elements.next()
 : (type == KEYS)
 ? ((Association)elements.next()).key()
 : ((Association)elements.next()).value();
 }

 public void remove () {
 // not used - null implementation
 }
 }
}

Page 413

Discussion of Listing 17.4

Since we may iterate over the objects contained in Vector, class VectorDictionary and its inner class VectorIterator
provide iterator access to entries as well as keys and values. A fourth field, private static int ENTRIES , provides support
for iteration over entries. A private method entryFor(Object key) returns the association entry for the specified key, if
found. It is intended for use by query valueFor() and also by commands addKey, removeKey , and changeValue . An
instance of VectorIterator is created with a specified value for type. This value is then used by query next to return the
next entry, key, or value.

17.4—
The Dictionary Laboratory

A dictionary laboratory is presented that tests all constructors, commands, and queries for the Dictionary
implementations. It can test both the Hashtable and Vector implementations (HashDictionary and VectorDictionary,
respectively) and accept three different pluggable implementations (class names ending in E) left as exercises. Figure
17.3 shows a class diagram for the dictionary laboratory and its major supporting classes.

Full implementations are provided in the foundations package for HashDictionary and VectorDictionary. Partial
implementations are provided for the three classes HashDictionaryE, DictionaryE , and VectorDictionaryE ; the
remaining details may be assigned as exercises. All five classes may be exercised from the dictionary laboratory.

Figure 17.3.
Class diagram for the dictionary laboratory.

Page 414

Figure 17.4.
Preliminary screen shot of the dictionary laboratory.

Figure 17.4 shows a screen shot of the dictionary laboratory, illustrating the options for implementing classes as selected
from the combo box. VectorDictionary has been selected, which enables the buttons. Entries into the dictionary are
arbitrarily constrained to have integer keys and string values. This allows us to show different issues for reading integers
and strings from a text field in the source file for DictionaryLab .

Another screen shot of the dictionary laboratory is shown in Figure 17.5 after creation of an instance of HashDictionary
and exercising a number of operations.

One might ask why we would want a dictionary that is not ordered. To answer this question we must first look at how
the dictionary is implemented. We have presented two options: (1) a hash table (Hashtable) or (2) an indexable list
(Vector). Both of these do have order. The order is just based on something other than the relative magnitudes of the
contained objects. Both use an array to store the objects. The index in the array for a given object is computed from a
hashing function for Hashtable and is a victim of the history of insertions and removals for Vector. An ''ordered"
dictionary would have objects stored from smallest to largest. In terms of efficiency of lookup operations, the unordered
hash table implementation is the best. It requires a fixed time to find any object, regardless of the size of the dictionary.
Its time complexity is O(1) versus O(n) or O(log2 n) or typical implementations of ordered dictionaries. The Vector
implementation of Dictionary has time complexity O(n).

Page 415

Figure 17.5.
Screen shot of the dictionary laboratory after exercising options.

17.5—
The OrderedDictionary Interface

An ordered dictionary is a dictionary whose entries are ordered in terms of its keys. Interestingly enough, interface
OrderedDictionary extends not Dictionary , but SearchTable. This allows us to enforce the comparable property of keys
in an ordered dictionary. Recall that a search table contains comparable objects. Although an ordered dictionary is a kind
of dictionary, it is more precisely a kind of search table whose contained elements are associations. The relationships
among interfaces OrderedDictionary, SearchTable, and Dictionary were shown in Figure 17.1. Listing 17.5 shows the
source for interface OrderedDictionary, repeated from Chapter 10.

Listing 17.5 Interface OrderedDictionary

/** Interface OrderedDictionary
* A dictionary contains instances of Association: key-value pairs
* A class for a key must implement equals () from class Object
* AND interface Comparable for an ordered dictionary
*/
package foundations;
import java.util.*;

Page 416

public interface OrderedDictionary extends SearchTable {

 // Commands

 /** Add an association <key-value>; value may be null
 */
 public void addkey (Comparable key, Object value);

 /** Changes value for specified key
 * Throw NoSuchElementException if key not found.
 */
 public void changeValue (Comparable key, Object value);

 // Queries

 /** Return true if key is in dictionary
 */
 public boolean containsValue (Object value);

 /** Return value for specified key
 * Throw NoSuchElementException if key not found
 */
 public Object valueFor (Comparable key);

 /** Return an iterator on the keys
 */
 public Iterator keys ();

 /** Return an iterator on the values
 */
 public Iterator values ();
}

The complete behavior of an ordered dictionary includes commands and queries from interface OrderedDictionary, plus
those inherited from interfaces SearchTable and Container , plus optionally selected methods from Object. Implementing
classes must implement all these commands and queries. An example design is illustrated in Table 17.2 for a class
named ImpOrderedDictionary . The inherited Container methods include command makeEmpty plus queries size and
isEmpty. Interface SearchTable adds two new commands and three new queries. Interface OrderedDictionary adds two
new commands and three new queries. The set of commands and queries for an OrderedDictionary is essentially the
same as that for a Dictionary. The major difference is the requirement that an ordered dictionary contain Comparable
objects. The remove command from interface SearchTable performs the equivalent function of removeKey in dictionary.
The add command from SearchTable accepts a single association as a parameter. Finally, query get from SearchTable
has no corresponding query for Dictionary . It is also desirable to override the toString query from class Object in
implementing classes for OrderedDictionary.

Page 417

Table 17.2 Public Interface Design for Implementing Classes of OrderedDictionary

Constructors

public ImpOrderedDictionary() Create an empty ordered dictionary with
default capacity.

public ImpOrderedDictionary(int capacity) Create an empty ordered dictionary with
specified capacity.

Commands

public void add(Comparable obj) Add a new association, obj, to the ordered
dictionary (from SearchTable).

public void addKey(Comparable key, Object
value)

Add <key:value> as a new association in
the ordered dictionary; if key already
present change its value. Value may be null.

public void remove(Comparable key) If found remove contained association with
specified key.

public void changeValue(Comparable key,
Object value)

Change value for specified key; throw
exception if key not found.

public void makeEmpty() Make the ordered dictionary empty (from
Container).

Queries

public boolean contains(Comparable key) Return true if key is in the ordered
dictionary (from SearchTable).

public boolean isEmpty() Return true if dictionary is empty (from
Container).

public int size() Return the number of associations (from
Container).

public Object valueFor(Comparable key) Return the value for specified key; throw
exception if key not found.

public boolean containsValue(Object value) Return true if value is in the ordered
dictionary.

public Comparable get(Comparable key) Return the association with given key,
throw exception if key not found (from
SearchTable).

public Iterator elements() Return an iterator on the associations in the
ordered dictionary (from SearchTable).

public Iterator keys() Return an iterator on the keys in the ordered
dictionary.

public Iterator values() Return an iterator on the values in the
ordered dictionary.

public String toString() Override from Object to return
{ <key1:val1>, <key2:val2>, . . . }

Page 418

Figure 17.6.
Class diagram for implementing classes of OrderedDictionary.

The three queries that return iterators may optionally use an inner class to implement the Iterator interface. Two
potential constructors are shown that initialize an ordered dictionary to some default capacity or specified capacity.
Depending on the actual class chosen for internal data representation, additional constructors or modifications to the two
shown in Table 17.2 may be required.

17.6—
Implementing the OrderedDictionary Interface

We previously presented two data structures that implement interface SearchTable: class OrderedList in Chapter 13 and
class BinarySearchTree in Chapter 15. Either of these data structures may be used as the actual container for an ordered

Page 419

dictionary. The advantage of using an encapsulated binary search tree or ordered list for our ordered dictionary class is
that most of the commands and queries are already implemented. We need only send the appropriate message to the
encapsulated data object. Figure 17.6 shows a class diagram for two implementing classes of interface
OrderedDictionary. Both implementing classes of OrderedDictionary encapsulate an instance called data that is the
selected data structure.

Only the public commands and queries are shown for classes OrderedList and BinarySearchTree , although each has a
number of private or protected supporting methods. It is interesting to note that classes TreeDictionary and
ListDictionary have only public methods. This is a direct consequence of their reuse of existing classes, for data, that
implement interface SearchTable .

TreeDictionary and ListDictionary must also implement interface Iterator in support of the keys, values, and elements
queries. This may be done directly or by using an inner class for the iterators.

Listing 17.6 shows limited details for a class called TreeDictionary that implements interface OrderedDictionary. It is
left as an exercise to complete the implementation details.

Listing 17.6 A BinarySearchTree Implementation of Interface OrderedDictionary

/** class TreeDictionary -
 implementation of OrderedDictionary
* - uses a BinarySearchTree for data
*/
package foundations;
import java.util.*;

public class TreeDictionary implements OrderedDictionary {

 // Fields
 private BinarySearchTree data;
 private static int KEYS = 0; // iterator control
 private static int VALUES = 1; // iterator control
 private static int ENTRIES = 2; // iterator control

 // Constructors

 /** Construct an empty dictionary
 */
 public TreeDictionary () {
 // left as an exercise
 }

 // Commands

 /** Add an association to the dictionary
 */
 public void add (Comparable obj) {
 // left as an exercise }

Page 420

 /** Add an association <key-value>
 * If the key already exists, sat its value
 * BinarySearchTree requirement: add() overwrites existing element
 */
 public void addKey (Comparable key, Object value) {
 // left as an exercise
 }

 /** Remove association with key if found
 * Association.compareTo() uses only keys, value not needed
 */
 public void remove (Comparable key) {
 // left as an exercise }

 /** Change value for specified key
 * Throw NoSuchElementException if key not found.
 */
 public void changeValue (Comparable key, Object value) {
 // left as an exercise
 }

 /** Remove all objects from the container if found
 */
 public void makeEmpty () {
 // left as an exercise
 }

 // Queries

 /** Return true if the container is empty
 */
 public boolean isEmpty () {
 // left as an exercise
 return true;
 }

 /** Return the number of keys in the dictionary
 */
 public int size () {
 // left as an exercise
 return 0;
 }

 /** Answer true if obj is in the container as a value
 */
 public boolean containsValue (Object value) {
 // left as an exercise
 return false;
 }

TE
AM
FL
Y

Team-Fly®

Page 421

 /** Return true if key in the dictionary
 */
 public boolean contains (Comparable key) {
 // left as an exercise
 return false;
 }

 /** Return entry for key
 * Throw NoSuchElementException if key not found
 */
 public Comparable get (Comparable key) {
 // left as an exercise
 return null;
 }

 /** Return value for specified key
 * Throw NoSuchElementException if key not found
 */
 public Object valueFor (Comparable key) {
 // left as an exercise
 return null;
 }

 /** Return iterator over all entries
 */
 public Iterator elements () {
 // left as an exercise
 return null;
 }

 /** Return iterator over all keys
 */
 public Iterator keys () {
 // left as an exercise
 return null;
 }

 /** Return iterator over all values
 */
 public Iterator values () {
 // left as an exercise
 return null;
 }
 /** Override method toString() from class Object
 * Return in set notation all entries in the dictionary
 * Notation is: {<key1:value1>, <key2:value2>, . . .}
 */

Page 422

 public String toString () {
 // left as an exercise
 return ''" ;
 }
}

An implementation for OrderedDictionary using an OrderedList has essentially the same form as the BinarySearchTree
implementation in Listing 17.6, except that data is an OrderedList . It is left as an exercise to provide the complete
implementation of class ListDictionary with the partial template shown in Listing 17.7.

Listing 17.7 ListDictionary Implementation of OrderedDictionary

/** Class ListDictionary - implements OrderedDictionary
* Uses an instance of OrderedList for data;
*/
package foundations;
import java.util.*;

public class ListDictionary implements OrderedDictionary {

 // Fields
 OrderedList data;

 // All remaining details left as an exercise
}

Next we look at details of an ordered dictionary laboratory for testing implementations of OrderedDictionary. The
foundations package provides complete implementations for TreeDictionary and ListDictionary .

17.7—
The Ordered Dictionary Laboratory

The ordered dictionary laboratory is designed to illustrate and test features of implementing classes for interface
OrderedDictionary. It allows the user to optionally select from the two fully implemented classes, TreeDictionary and
ListDictionary , or from three implementations left as exercises. Figure 17.7 shows a class diagram representing the
design features of the ordered dictionary laboratory.

Classes TreeDictionaryE and ListDictionaryE are partial implementations of TreeDictionary and ListDictionary. Details
of these classes are left as an exercise. Additionally, class OrderedDictionaryE may be used for a custom
implementation of OrderedDictionary.

A screen shot of the ordered dictionary laboratory is shown in Figure 17.8 after selection of the TreeDictionary
implementing class and performing a number of operations on the ordered dictionary. The ordered dictionary laboratory
is designed to accept strings for key and value. Notice that the keys are ordered independently of their insertion order.

Page 423

Figure 17.7.
Class diagram for the ordered dictionary laboratory.

Figure 17.8.
Screen shot of the ordered dictionary laboratory.

Page 424

17.8—
Summary

This chapter adds additional detail to class Association and introduces details for the dictionary as a container. It defines
two kinds of dictionaries: Dictionary and OrderedDictionary. Laboratories are presented that allow testing of
implementing classes for interfaces Dictionary and OrderedDictionary. Properties for associations and dictionaries are:

• An association represents a key:value pair.

• Dictionaries contain associations. The elements in the dictionary may be ordered on the keys of its contained
associations or may be nonordered.

• A dictionary contains elements whose internal order depends on the details of its implementing classes. It is said to be
''nonordered." It contains instances of Object. Interface Dictionary extends Container . A dictionary does not use the
comparable property of its contained associations.

• An ordered dictionary contains elements whose internal order is based on the values of the elements. Its contained
objects must be Comparable . For this reason, interface OrderedDictionary extends SearchTable.

• A dictionary may be implemented as a hash table or a linear list. Lookup performance of the hash table is O(1)
compared to O(n) for the list.

• An ordered dictionary may be implemented as a binary search tree or an ordered list. Lookup performance for the
binary search tree is O(n log 2 n) compared to O(n) for the ordered list.

17.9—
Exercises

1 Develop a test class called AssociationTest that tests all the commands and queries for instances of Association. Pay
close attention to the differences between queries equals and compareTo. Be certain to verify that these two queries
provide the behavior described in the discussion of Listing 17.1.

2 A complete solution to class HashDictionary (shown in Listing 17.3) is provided in the foundations package and
works with the dictionary laboratory (found in the DictionaryLab folder as part of the downloadable notes).

a. Verify that the dictionary laboratory works as expected for the java.util. Hashtable implementation in class
HashDictionary. You may copy the entire DictionaryLab folder into a directory of your choice and run the batch
file named Goui.bat.

b. Folder DictionaryLab\foundations contains a skeletal implementation for Dictionary called HashDictionaryE that
compiles and runs but does little else. Complete all details for class HashDictionaryE and verify that it works using
the dictionary laboratory. In your implementation of HashDictionaryE , use a hash table of your own
implementation as the data structure that contains the dictionary elements.

3 A complete solution to class VectorDictionary is provided in the foundations package and works with the dictionary
laboratory (found in the DictionaryLab folder as part of the downloadable notes).

Page 425

a. Verify that the dictionary laboratory works as expected for the java.util.Vector implementation in class
VectorDictionary. You may copy the entire DictionaryLab folder into a directory of your choice and run the batch
file named Goui.bat.

b. Folder DictionaryLab\foundations contains a skeletal implementation for Dictionary called VectorDictionaryE
(similar to Listing 17.4) that compiles and runs but does little else. Complete all details for class VectorDictionaryE
and verify that it works using the dictionary laboratory. In your implementation of VectorDictionaryE , use
java.util.Vector as the data structure that contains the dictionary elements.

4 Folder DictionaryLab\foundations contains a skeletal implementation for Dictionary called DictionaryE that compiles
and runs but does little else. Complete all details for class DictionaryE and verify that it works using the dictionary
laboratory. In your implementation of DictionaryE , use any data structure of your choice that contains the dictionary
elements. Write a detailed description of the chosen data structure and describe its performance features. Compare your
data structure with the hash table and list implementations.

5 A complete solution to class TreeDictionary is provided in the foundations package and works with the ordered
dictionary laboratory (found in the OrderedDictionaryLab folder as part of the downloadable notes).

a. Verify that the ordered dictionary laboratory works as expected for the foundations.BinarySearchTree
implementation in class TreeDictionary. You may copy the entire OrderedDictionaryLab folder into a directory of
your choice and run the batch file named Goui.bat.

b. Folder OrderedDictionaryLab\foundations contains a skeletal implementation for OrderedDictionary called
TreeDictionaryE (similar to Listing 17.6) that compiles and runs but does little else. Complete all details for class
TreeDictionaryE and verify that it works using the ordered dictionary laboratory. In your implementation of
TreeDictionaryE, use a binary search tree of your own implementation as the data structure that contains the
dictionary elements.

6 A complete solution to class ListDictionary is provided in the foundations package and works with the ordered
dictionary laboratory (found in the OrderedDictionaryLab folder as part of the downloadable notes).

a. Verify that the ordered dictionary laboratory works as expected for the foundations.OrderedList implementation
in class ListDictionary . You may copy the entire OrderedDictionaryLab folder into a directory of your choice and
run the batch file named Goui.bat.

b. Folder OrderedDictionaryLab\foundations contains a skeletal implementation for OrderedDictionary called
ListDictionaryE that compiles and runs but does little else. Complete all details for class ListDictionaryE and verify
that it works using the ordered dictionary laboratory. In your implementation of ListDictionaryE , use your own
implementation of an ordered list as the data structure that contains the dictionary elements.

Page 426

7 Folder OrderedDictionaryLab\foundations contains a skeletal implementation for OrderedDictionary called
OrderedDictionaryE that compiles and runs but does little else. Complete all details for class OrderedDictionaryE and
verify that it works using the ordered dictionary laboratory. In your implementation of OrderedDictionaryE , use any
data structure of your choice. It may be a class that implements SearchTable or a totally new class that implements
OrderedDictionary directly. Write a detailed description of the chosen data structure and describe its performance
features. Compare your data structure with the binary search tree and ordered list implementations.

Page 427

18—
Sorting

Sorting involves rearranging information in some container, usually an array, so that the information is stored from
smallest to largest (ascending order) or from largest to smallest (descending order). The need to sort is fundamental. We
are interested in finding efficient algorithms to accomplish the task.

We shall assume throughout this chapter that the entities to be sorted are Comparable . That is, they may be compared
using the query compareTo.

All the sorting methods are presented as static functions with an array of Comparable as the first parameter and the
number of elements to be sorted as the second parameter. Although this represents a departure from the normal pattern
of object-oriented class construction, we believe it is justified. As long as the array of elements to be sorted are
Comparable the user should not be burdened with having to create an instance of a sorting class in order to rearrange the
elements in the array that requires sorting.

18.1—
Simple and Inefficient Sorting Algorithms

We consider two relatively simple sorting algorithms in this section before turning our attention to more efficient
sorting.

18.1.1—
Selection Sort

The array is scanned from index 1 to index n and the location of the largest value is obtained. This value is interchanged
with the nth value. This assures that the largest value is placed in the rightmost position (index n).

The array is again scanned, this time from index 1 to index n - 1. The location of the largest value is obtained. This value
is interchanged with the (n - 1)st value.

This pattern is continued, each time finding the location of the largest value and then interchanging it with the rightmost
position in a range of values that shrinks by one each time.

Listing 18.1 shows Java code that accomplishes selection sort. It is assumed that the numbers in the array are stored in
index locations 1 to n (i.e., we allocate one extra index in the array to allow ''natural" indexing to be used).

Page 428

Listing 18.1 Selection Sort

public static void selectionSort (double [] data, int size) {
 int maxIndex, index1, index2;
 double max, temp;

 for (index1 = size; index1 >= 2; index1--) {
 max = data [1];
 maxIndex = 1;
 for (index2 = 2; index2 <= index1; index2++)
 if (data [index2] > max) {
 maxIndex = index2;
 max = data [index2];
 }
 temp = data [index1];
 data [index1] = data [maxIndex];
 data [maxIndex] = temp;
 if (lab.display && index1 % 500 == 0)
 lab.displayData(size);
 }
}

Complexity of Selection Sort

We seek to determine how the computational effort increases as a function of problem size for large problem size n.

Each iteration in the selection sort algorithm requires many comparisons followed by a single exchange. On the first
iteration, it takes computation time proportional to n (n - 1 comparisons plus an exchange) to compute the maximum
value. On the second iteration, it takes computation time proportional to n - 1. On the third iteration, it takes computation
time proportional to n - 2. The overall computation time is therefore proportional to n + (n - 1) + (n - 2) + . . . + 1. This
well-known arithmetic series has a sum equal to n ∗ (n + 1)/2. For large n, this is proportional to n2 since we can
disregard the linear term in the polynomial.

We therefore can say that selection sort is O(n2). For large n, if we double the size of the array that we are sorting, we
quadruple the computational effort. This can cause serious problems if n is large.

18.1.2—
Bubble Sort

During the first iteration, each element in the array is compared to its next element (element one index higher). If the
second element is smaller than the first element, the two elements are interchanged; otherwise they are left alone. Upon
the conclusion of this first iteration, the largest element in the array is guaranteed to be in the rightmost position, n.

Page 429

During the second iteration, the elements are again compared two at a time and interchanged if they are out of order
(second element being smaller than the first) and left alone if they are in order. These comparisons stop after the (n - 2)
nd element is compared to the (n - 1)st element.

On subsequent iterations, element comparisons and possible interchanges are performed on a shrinking range of
elements. Boolean parameter exchanged is set to false prior to each iteration of the inner for loop. If no exchanges are
made, the array is sorted and Bubble Sort halts.

Listing 18.2 shows the details of the Bubble Sort method.

Listing 18.2 Bubble Sort

public static void bubbleSort (Comparable [] data, int size) {
 int index1, index2;
 Comparable temp;
 boolean exchanged;

 for (index1 = size; index1 >= 2; index1--) {
 exchanged = false;
 for (index2 = 1; index2 <= index1 - 1; index2++) {
 if (data [index2].compareTo(data [index2 + 1]) > 0) {
 temp = data [index2];
 data [index2] = data [index2 + 1];
 data [index2 + 1] = temp;
 exchanged = true;
 }
 }
 if (!exchanged)
 break;
 }
}

Complexity of Bubble Sort

We again seek to determine how the computational effort increases as a function of problem size for large problem size
n.

The same reasoning process as given above leads to the conclusion that the complexity is O(n2). On the first iteration
there are n - 1 comparison operations. On the next iteration there are n - 2 and so forth.

Bubble Sort generally performs worse than Selection Sort, although both have time complexity O(n2). This can be
attributed to the fact that Bubble Sort does more swapping of elements in the array. Both do an equivalent number of
comparisons. For example, on the first iteration, there are (n - 1) comparisons and a maximum of (n - 1) exchanges
(Selection Sort had only one exchange). For an array of elements that are almost sorted, Bubble Sort does exceptionally
well. This is because it breaks out of the algorithm as soon as no swaps are made (when exchanged remains false).

Page 430

18.2—
Efficient Sorting Algorithms

18.2.1—
Quick Sort

This algorithm, developed by Tony Hoare, is considered by many to be the fastest sorting algorithm in existence. It
employs a ''divide and conquer" strategy in which the sorting of a large array is replaced by the sorting of two smaller
arrays. Each of these in turn is replaced by two still smaller arrays. This process of replacing a large problem by two
smaller problems continues recursively until the array is of size 2.

The outer structure of method quickSort is given in Listing 18.3.

Listing 18.3 Outer Structure of Quick Sort

public static void quickSort (Comparable [] data, int low, int high) {
 int partitionIndex;

 if (high - low > 0) {
 partitionIndex = partition (data, low, high);
 quickSort (data, low, partitionIndex - 1);
 quickSort (data, partitionIndex + 1, high);
 }
}

The genius of this algorithm is the concept and implementation of method partition. This method returns an index
location, partitionIndex, which contains a value that splits the array into two disjoint subsets. In the left subset,
consisting of all array elements whose indices are less than the partition index, the values are less than the partition
value. In the right subset, consisting of all array elements whose indices are greater than the partition index, the values
are equal to or greater than the partition value. If all the left subset values are sorted and all the right subset values are
sorted, then since all the left subset values are less than all the right subset values, the entire array is sorted. This forms
the basis for the recursion in Listing 18.3. It gives the best performance if method partition divides the array in half at
each level.

Figure 18.1 shows the array before and after partition does its work. The partition algorithm arbitrarily chooses the
element at index low as the partition element (5 in the figure). It then proceeds to find the required index location
(partitionIndex) in the array to which the partition element must be moved.

Figure 18.1.
Result of method partition.

TE
AM
FL
Y

Team-Fly®

Page 431

Listing 18.4 shows the code that implements the partition algorithm.

Listing 18.4 Partition Method

private static int partition (Comparable [] data, int low, int high) {
 int k, j;
 Comparable temp, p;

 p = data [low]; // Partition element
 // Find partition index (j).
 k = low;
 j = high + 1;
 do {
 k++;
 } while (data [k].compareTo(p) <= 0 && k < high);
 do {
 j--;
 } while (data [j].compareTo(p) > 0);
 while (k < j) {
 temp = data [k];
 data [k] = data [j];
 data [j] = temp;
 do {
 k++;
 } while (data [k].compareTo(p) <= 0);
 do {
 j--;
 } while (data [j].compareTo(p) > 0);
 }
 // Move partition element (p) to partition index (j).
 if (low != j) {
 temp = data [low];
 data [low] = data [j];
 data [j] = temp;
 }
 return j; // Partition index
}

Complexity of Quick Sort (Informal Argument)

If, on the average, the partition function bisects the array into two relatively equal subsets, then the number of times this
may happen is log 2 n. This implies that the partition function will be invoked approximately log2 n times. Each time it is
invoked it requires linear time to perform its work. Although this time is in general less than n (because only a portion of
the array is being partitioned), an upper bound for partition would be O(n). Therefore, the complexity of Quick Sort is
bounded by O(n log2 n).

This is significantly more efficient than O(n2). If, for example, the problem size were n = 1,000,000, the ratio of n2 to n
log2 n would be approximately equal to

Page 432

1012 /20 ∗ 106. That is, the inefficient algorithm would take about 50,000 times longer to execute than the efficient Quick
Sort algorithm.

We walk through a simple example to illustrate the operation of the partition function.

Consider an array with the following values. The partition element, p, equals 5 (always the first element in the array).

Steps in iteration 1 are the following. The index k is incremented from the leftmost position until the first element is
found that is larger than p. In this case, k is 2 corresponding to element 10. The index j is decremented from the
rightmost position until the first element is found that is equal to or less than p. In this case, j is 10 corresponding to
element 3.

Since k is less than j, we interchange the values at these indices (swap 10 and 3). The new array is:

In iteration 2 we again increment index k until we find the first element that is larger than p. We decrement the index j
until we find the first element that is equal to or less than p. The value of k is 3 and the value of j is 9. After
interchanging the values (swap 7 and 4) at these indices the new array is:

We continue this pattern as long as the index k is less than the index j. In iteration 3, k reaches index 6 (containing
element 9) and j reaches index 5 (containing element 1). Since k is no longer less than j the while loop terminates.

The final step is to interchange the value at index low (equal to 1) with the value at index j (equal to 5). We swap
elements 5 and 1. This leads to the array:

The partition algorithm has produced elements in index locations smaller than partitionIndex (the partition element)
whose values are smaller than 5 and values in index locations greater than partitionIndex whose values are greater than
5. That is exactly the purpose of method partition.

Consider the situation where the array starts out as sorted. You will be asked to show as an exercise that the Quick Sort
algorithm turns in its worst performance, O(n2), when the input data are already sorted. How ironic!

Page 433

18.2.2—
Gap Sort

Recently a new sorting algorithm that is a small variant of Bubble Sort has been invented. This algorithm is called Gap
Sort. Gap Sort starts off by comparing elements that are separated by a given gap. If the elements being compared are
out of order (the second element is smaller than the first), they are interchanged. An iteration is completed after all the
elements that can be compared (not all of them) are compared (the 1st element is compared to the element in index 1 +
gap, the 2nd element is compared to the element in index 2 + gap, . . . , the n - gap element is compared to the nth
element).

On the next iteration, the value of gap is reduced by a constant factor called the ''shrink factor," a number greater than 1.
Again all the elements that can be compared are compared. During each subsequent iteration, the gap is reduced by the
shrink factor until it reaches a value equal to or less than 1. At this time the gap is frozen at 1.

The code for this algorithm is given in Listing 18.5. The constant SF (shrink factor) is assigned a value greater than 1.0
outside of this procedure, initially equal to size.

Listing 18.5 Gap Sort

public static void gapSort (Comparable [] data, int size) {
 int index;
 int gap, top;
 Comparable temp;
 boolean exchanged;
 double SF = 1.3;

 gap = size;
 do {
 exchanged = false;
 gap = (int) (gap / SF);
 if (gap == 0)
 gap = 1;
 for (index = 1; index <= size - gap; index++) {
 if (data [index].compareTo
(data [index + gap]) > 0) {
 temp = data [index];
 data [index] = data [index + gap];
 data [index + gap] = temp;
 exchanged = true;
 }
 }
 } while (exchanged || gap > 1);
}

The algorithm is almost identical to Bubble Sort. If the gap were set to 1, then pure Bubble Sort would result.

Page 434

By comparing data [index] with data [index + gap], the smaller elements are brought more quickly from right to left,
whereas in ordinary Bubble Sort, these smaller elements migrate very slowly from right to left.

What makes this algorithm nothing short of amazing is that it works very efficiently only when the shrink factor is very
close to the value 1.3. For any shrink factors that deviate even slightly from this magic value, the algorithm dramatically
slows down to the speed of ordinary Bubble Sort. Nobody really understands what is so special about the magic shrink-
factor value 1.3. This is an open question.

18.3—
Binary Search

An additional static function to add to class Sorting is binarySearch. This method allows one to efficiently search an
array after the array has been sorted.

Listing 18.6 Binary Search

public static boolean binarySearch (Comparable [] data, int first,
 int last, Comparable value) {
 int middle = (first + last) / 2;
 if (data [middle].compareTo(value) == 0)
 return true;
 else if (value.compareTo(data [middle]) < 0) {
 if (first <= middle - 1)
 return binarySearch (data, first, middle - 1, value);
 else
 return false;
 }
 else if (value.compareTo(data [middle]) > 0) {
 if (middle + 1 <= last)
 return binarySearch (data, middle + 1, last, value);
 else
 return false;
 }
 return false; // This line is never reached
}

The algorithm for binarySearch uses a ''divide and conquer" approach to search and provides time performance of O
(log2 n).

18.4—
Sort Laboratory

An application program, Sort Lab, is available for your use. In this program each of the sorting algorithms (Selection
Sort, Bubble Sort, Gap Sort, and Quick Sort) are implemented. A provision for visualizing the data as sorting progresses
is available as well as a provision for timing the various algorithms using the algorithm of your choice. Figure 18.2
shows a graphical display indicating the progress of a Bubble Sort.

Page 435

Figure 18.2.
The sort laboratory.

18.5—
Summary

• The need to sort is fundamental. We are interested in finding efficient algorithms to accomplish the task.

• All the sorting methods are presented as static functions with an array of Comparable as the first parameter and the
number of elements to be sorted as the second parameter.

• Quick Sort, developed by Tony Hoare, is considered by many to be the fastest sorting algorithm in existence. It
employs a ''divide and conquer" strategy in which the sorting of a large array is replaced by the sorting of two smaller
arrays. Each of these in turn is replaced by two still smaller arrays. This process of replacing a large problem by two
smaller problems continues recursively until the array is of size 2.

18.6—
Exercises

1 Discuss the advantages, if any, and disadvantages, if any, of making each sorting method a static method.

Consider the following data set in an array:

5, 11, 15, 14, 13, 12, 17, 10, 8, 4, 2, 6, 9, 3, 1 .

Walk through the following sorting methods (Exercises 2 through 5) and count the number of interchange operations
that are required for each sorting method.

2 Walk through and count the number of interchange operations required using Selection Sort.

Page 436

3 Walk through and count the number of interchange operations required using Bubble Sort.

4 Walk through and count the number of interchange operations required using Gap Sort.

5 Walk through and count the number of interchange operations required using Quick Sort.

6 Implement Selection Sort if the data are held in a vector.

7 Implement Bubble Sort if the data are held in a vector.

8 Implement Quick Sort if the data are held in a vector.

9 Implement a Selection Sort on a two-dimensional array declared as follows:

Comparable [] [] data;

if the sorting is to be done on the data in column 0.

10 Show that the worst-case performance of Quick Sort occurs when the input data are already sorted.

11 How might you modify the Quick Sort algorithm to guarantee O(n log 2 n) performance for all input data?

Page 437

Appendix A—
Unified Modeling Language Notation

This appendix presents a brief introduction to UML notation as used in the book. For more detailed discussion of UML,
its history, notation, documentation, and uses, the reader is referred to the UML Web page for Rational Software
Corporation:

http://www.rational.com/uml/

A.1—
Representing Classes in UML

UML notation provides a rich variety of options for graphically representing the details of a class. The basic icon for a
class is a rectangular box with one, two, or three compartments as shown in Figure A.1. The compartments contain
strings and special symbols. The Name compartment is required. The two List compartments typically contain attributes
and operations and may be suppressed as desired. Within each compartment, UML offers many options for amount of
detail to be shown.

Among the options for detail to be shown in the three compartments are the following:

• String – an identifier representing a class name, field name, or method name.

• <<stereotype -string>> – A string in guillemets is a stereotype. Stereotypes may be thought of as categories that further
qualify a class, field, or method. For example, we may use the stereotype <<interface>> to identify a class that is a Java
interface. We may apply the stereotype <<final >> to a constant field and the stereotypes <<command>> or <<query>>
to methods.

• +, –, # – Visibility is indicated using a ''+" symbol for public, a "–" symbol for private , a "#" symbol for protected , or
no symbol for package (Java default).

• {property-string} – A string in curly braces is used to identify additional properties for a class, field, or method.

The template for a class name is

ClassName

The default visibility for a class is public. Nonpublic classes may be identified using a property string. Property strings
may also be used to identify the package to which a class belongs. Class names are typically boldface for emphasis.

Page 438

Figure A.1.
UML icon for representing a class.

An abstract class or interface class name is usually displayed in italics with the addition of stereotypes <<abstract>> or
<<interface>>.

The template for fields is given by:

visibility name : type-expression = initial-value {property-string}

where:

visibility is a +, –, #, or no symbol,

name is the name of the field,

type-expression is the type of the field, separated from name by a colon,

initial-value is the default initialization value for the field, after equals,

property-string is as defined above in curly braces.

All parts of the field template are optional except the name . A stereotype, if used, is displayed first.

The template for methods is given by:

visibility name (parameter-list) : return-type-expression {property-string}

where:

visibility is a +, –, #, or no symbol,

name is the name of the method,

parameter-list is a comma-separated list of parameter:type elements enclosed in parentheses,

return-type-expression is the type returned by the method, separated from parameter-list by a colon,

property-string is as defined above in curly braces.

Figure A.2 shows several options for displaying abstract class Vehicle from Chapter 1 using UML. A particular display
of a class may selectively include any combination of features of the class. The minimal display is one compartment
with the class name.

Figure A.2.
Options for displaying class Vehicle.

Page 439

The left column in Figure A.2 shows the minimal display for class Vehicle and an enhanced display including the field
List compartment. Class Vehicle is identified as abstract in two ways: (1) by italicizing the class name and (2) by using
the stereotype <<abstract>>. Fields weight of type int and color of type Color have protected visibility and weight is
initialized to 0.

The middle column shows class Vehicle with the field List compartment suppressed and the method List compartment
visible. Method accelerate is abstract (italicized) and is a <<command>>. Methods weight and color both are stereotype
<<query>>. All three methods have public visibility.

The right column shows all details included in the specification for class Vehicle. Return types (parameters too, if there
are any) are shown for all methods. A property string identifies accelerate as a key method (one that must be
implemented by subclasses).

A few additional options for displaying a class are shown in subsequent examples.

A.2—
Representing Relationships among Classes in UML

There are a number of possible relationships among classes, five of which are significant for Java. These five
relationships are:

1. Extension – a subclass extends its parent class.

2. Implementation – a class implements an interface class.

3. Association – two classes have an association to each other. Higher order and more complex associations are also
possible but are not used in this book.

4. Using – a class uses another class, such as a utility class.

5. Inner – a class may contain an inner class (defined within the containing class).

Notation for extension and implementation is shown in UML in Figure A.3. The directed arrows may optionally be
further qualified by attaching stereotypes or property strings to them. The property string venue is the discriminant for
distinguishing subclasses of Vehicle. The Vehicle class implements interface Serializable . An alternative way to
distinguish an extends relationship and an implements relationship is to make the arrow dashed for the implements
relationship.

An association between two classes implies a strong dependence. There are many varieties of associations and a rich set
of symbols and adornments to characterize them in UML. A single solid line connecting the two classes denotes an
association. The association may have a name and each class may have a role name. Communication between the two
classes may be bidirectional (the default) or unidirectional as indicated by a simple arrowhead. A using relationship
between two classes is typically utilitarian and a somewhat weaker relationship than an association. A single dashed line
connecting the two classes denotes a using relationship. A using relationship may be characterized by the same set of
adornments available for an association. Figure A.4 shows examples of associations and using relationships.

Page 440

Figure A.3.
Extension and implementation in UML.

Class BinaryTreeHeap uses class Vector (for intermediate storage to enable iteration). It has (an association) two
instances of HeapNode (the root and last nodes). BinaryTreeHeap initiates communication in all as indicated by the
arrows. HeapNode has a bidirectional association with itself (a reference to its parent, also an instance of HeapNode).
Communication may be initiated in either direction.

Another association of interest is that of an aggregation. An aggregation is a whole–part relationship. The whole is an
aggregate of its parts. Figure A.5 shows a simple example of an aggregation plus additional adornments for associations.

Aggregation is shown as a diamond at the class representing the ''whole," class JetPlane in Figure A.5. Class JetPlane is
an aggregate of one (1) Fuselage, Avionics, one-to-eight (1 . . . 8) instances of Engine , and zero-or-one (0 . . . 1)
TailHook. It has one-or-more (1 . . . *) FlightCrew members and zero-or-more (0 . . . *) instances of Passenger.
ControlTower is an observer of JetPlane and has a bidirectional comm (communication) association with FlightCrew .
And JetPlane uses a Runway. The dashed line connecting associations from JetPlane to Avionics and Fuselage indicates
that additional aggregate parts exist. Figures A.4 and A.5 show only part of the rich set of relationships among classes
and qualifying details. The reader is referred to the UML documentation for additional details on associations and other
UML notation.

Figure A.4.
Associations and using relationships among classes.

TE
AM
FL
Y

Team-Fly®

Page 441

Figure A.5.
Aggregation shows a whole–part relationship.

An inner class may be shown as a class within a class. In addition to the inner class relationship, there may be another
dependency between the two classes. This dependency cannot be extension or implementation, but it can be an
association or using relationship. A simple example is shown in Figure A.6 for class LinkedStack, which implements the
Stack interface and has an inner class Node. Class LinkedStack has an association with its inner class through its field
top. Notes may be added to diagrams using a rectangle with a bent upper right corner. A dashed line connects the note to
its target UML component.

A.3—
Representing Packages in UML

A package is represented as a tabbed folder. Subpackages may be shown as folders within folders and classes within a
package may also be shown. Some simple examples using packages and classes in the Java platform are shown in Figure
A. 7. Package java contains (among others) subpackages util and awt . One interface in java.util is Observer . The awt
package contains many classes and subpackages including class Component and package event. Subpackage event
contains class ActionEvent and others.

Figure A.6.
Inner classes.

Page 442

Figure A.7.
Packages in UML.

A.4—
Representing Objects in UML

A rectangular box with two compartments, appropriate strings, and symbols inside represents an object in UML. The top
compartment contains the object name and its class in the form shown.

objectName : ClassName

Presentation options include (1) the object name only and (2) the class name only (preceded by the colon). The bottom
compartment is optional and shows details of the fields and their values for this particular object in the form below.

fieldName : type = value

Examples are shown in Figure A.8.

Object aPoint is implied as an instance of class Point by its name. It is the simplest representation for an object in UML.
Object bPoint in the second icon is clearly identified as an instance of Point. The third icon is an instance of Point with
no name; that is, it is anonymous. The fourth icon shows bPoint again and identifies its fields, their types, and current
values.

A.5—
Representing Interactions among Objects in UML

UML provides two kinds of diagrams for illustrating interactions among objects. These interaction diagrams are (1)
collaboration diagrams and (2) sequence diagrams. They show essentially the same information in two separate forms.
Both are part of the dynamic model for an object-oriented design. That is, they show

Figure A.8.
Objects in UML.

Page 443

Figure A.9.
Collaboration (object interaction) diagram in UML.

features of the software that are valid while the software is running. Most tools for generating UML diagrams provide an
automatic conversion from one to the other.

A sequence diagram shows a time-sequential display of messages passing among objects, usually in a linear time display
from top to bottom. A collaboration diagram shows objects displayed arbitrarily on a page with links (lines) connecting
those objects that interact. A directional arrow close to the link and a string identifying the message being sent indicates
message passing. An arrow with a circle at one end and a string identifies objects returned as a result of a message sent.
Messages may be numbered to indicate their sequence in both the sequence and collaboration diagrams.

We illustrate only a collaboration diagram. The book uses only one collaboration diagram in Chapter 6 to illustrate
details of event handling in Java and no sequence diagrams.

Figure A.9 shows some of the features of a collaboration diagram in UML. It shows two objects, oceanSim and
theOcean, plus one class, OceanCritter . Details are shown for initializing the ocean simulation. Numbered messages are
shown hierarchically. For example, message 1: initialize() sent by object oceanSim to itself consists of three parts: 1.1:
initialize(), 1.2: display() both sent to object theOcean, and 1.3: showStats() sent to itself.

As a more detailed explanation of Figure A.9, we may use a sequential list of messages showing hierarchical level by
indentation.

// initialize an instance of OceanSim
0: initialize() - main sends initialize() to object oceanSim

Page 444

 1: initialize() - oceanSim sends message initialize() to itself
 1.1: initialize() - oceanSim sends initialize() to theOcean
 1.1.1: createEmpty() - sent by theOcean to itself
 1.1.2: addCritters(num) - sent by theOcean to itself
 for num critters - loop
 1.1.2.1: new() - theOcean sends to class OceanCritter
 - object critter is returned
 1.1.2.2: getEmptyLocation() - theOcean to theOcean
 - returns location object
 1.1.2.3: insertAt(location) - theOcean to theOcean
 1.2: display () - oceanSim sends to theOcean
 1.3: showStats() - oceanSim sends to itself.
// initialize routine is complete

Page 445

Appendix B—
Complexity of Algorithms

Two resources coveted by software developers are memory space and execution time. Among the factors that determine
the memory footprint of an application or its execution time is the algorithm chosen in the application (there may of
course be many algorithms used within an application).

The space taken by an algorithm is related to the information structure used to hold the data and any other information
structures required to support the computational process. These are usually defined as fields in the data structure class.

The time required to execute an algorithm is dependent on the structure of the algorithm. We are usually concerned with
the worst-case time, the best-case time, and the average time, to be defined in the following paragraphs. Sometimes
these are the same. These execution times are usually related to one or more parameters that determine the size of the
problem being solved. To be conservative we normally rely on worst-case time when comparing two algorithms.

The worst-case time is the longest time that any problem of specified size takes to execute. The best-case time is the
shortest time that any problem of specified size takes to execute. The average -case time is an estimate of the time
required for an average problem of specified size.

For worst-case, best-case, and average -case times, we are normally concerned with asymptotic time complexity – in
plain English, the time required to complete an algorithm as a function of problem size when the problem size is
assumed to be large.

Let us consider an example. Suppose we wish to characterize the time for searching a linear linked list for a particular
element as in the list implemented by class SinglyLinkedList of Chapter 13. The best-case time occurs when the element
being sought is the first element in the list. The time is a constant, independent of the size of the list. The worst-case time
occurs when the element being sought is the last element. In this case the time required is directly proportional to the
size of the list, say n. The average-case time implies that it takes n/2 to complete the search (equivalent to finding an
element halfway into the list).
is considered to be O(g(n)) if and only if |f(n)| <= a ∗ g(n) for all n >= n0, where a and n0 are constants. If this
relationship holds, we say "function f is big O of g." is considered to be O(g(n)) if and only if |f(n)| <= a ∗ g(n) for all n
>= n0, where a and n0 are constants. If this relationship holds, we say "function f is big O of g." is considered to be O(g
(n)) if and only if | f(n)| <= a ∗ g(n) for all n >= n0 , where a and n0 are constants. If this relationship holds, we say
"function f is big O of g."|f(n)| <= a ∗ g(n) for all n >= n0 , where a and n0 are constants. If this relationship holds, we say
"function f is big O of g."

We use ''big O" notation
to characterize the
asymptotic complexity of
an algorithm. Formally,
an algorithm whose
computation time is given
by a function

We use ‘‘big O" notation
to characterize the
asymptotic complexity of
an algorithm. Formally,
an algorithm whose
computation time is given
by a function

We use ’’big O" notation
to characterize the
asymptotic complexity of
an algorithm. Formally,
an algorithm whose
computation time is given
by a function

We use ''big O" notation to characterize
the asymptotic complexity of an
algorithm. Formally, an algorithm whose
computation time is given by a function f
(n) is considered to be O(g(n)) if and only
if | f(n)| <= a ∗ g(n) for all n >= n0 , where
a and n0 are constants. If this relationship
holds, we say "function f is big O of g."

For the list example, the worst-case time would be O(n) since for any n the time required to find the last element (worst
case) is less than or equal to some

Page 446

constant times n. This is also the average-case time complexity since we do not take constants into account in big O
representation. The best-case time for a linear linked list would be constant complexity or O(1).

Algorithm complexity can sometimes be determined by carefully observing the structure of the program that implements
the algorithm. If a simple loop is required to compute the desired result with some size parameter, say n, as the upper
limit, the complexity of this portion of the algorithm is O(n). This is based on the simple idea that each iteration of the
loop contributes an equal share of overhead to the overall computational complexity. So, for example, the following
segment of code contributes O(n) complexity:

 for (int index = 0; index < n; index++) {
 /* Some sequence of steps */
}

Let us consider an algorithm structure based on two nested loops as follows:

 for (int index1 = 0; index1 < n; index1++) {
 for (index2 = 0; index2 < n; index2++) {
 /* Some sequence of steps */
 }
}

Here each loop is bounded by the size parameter n. If we again assume that each time the sequence of steps is executed
it contributes an equal share to the overall overhead of the algorithm, we merely have to estimate the total number of
steps as a function of n. For each value of the outer index1, the inner loop is executed n times. Since the outer loop is
executed n times, the overall number of steps is proportional to n2. Therefore the nested loops given above contribute O
(n2) complexity to the overall algorithm.

It is easy to show that triply nested loops would contribute O(n3) and so on. Sometimes the structure of a loop is subtle.
Consider the following loop structure:

 index = 1;
 while (index < n) {
 index *= 2;
 /* Some sequence of steps */
}

In the above loop, the number of iterations is given by log 2(n). This is because index is multiplied by two after each
iteration.

In comparing algorithms we usually compare their asymptotic complexity (big O function). In Chapter 15 it is shown
that a balanced binary search tree is able to locate an arbitrary element with average time complexity of log 2(n). We have

Page 447

already seen that a linked list requires O(n). How different are these algorithms in terms of their computational
efficiency?

As an example, suppose that we have n equals 1,000,000 in each structure. The ratio of performance between a binary
search tree and linked list of size one million is approximately:

log2(1,000,000)/1,000,000 = 20/1,000,000 = 1/50,000.

That is, the balanced search tree requires a computational effort that is 1/50,000 of that of the linked list.

To further illustrate the profound effect that the structure of an algorithm has on its performance, let us consider a
relatively simple but challenging problem.

Suppose we are given an array of size n of real numbers, with the stipulation that the array must contain at least one
positive and one negative number. Within such an array we define a subarray as contiguous values from some lower
index to some higher index, where the lower and higher indices may be the same. For example, the array of size 3 shown
below has the following subarrays:

Subarrays
1
2
3
1, 2
2, 3
1, 2, 3

Suppose we consider the sum of values within each subarray. These are given as follows:

Subarray Sum of values

1 value1

2 value2

3 value3

1, 2 value1 + value2

2, 3 value2 + value3

1, 2, 3 value1 + value2 + value3

Our problem is to compute the sum of values that is largest among all possible subarrays of a given array. Let us work
the solution to such a problem by hand for the new array given below with values shown.

Page 448

After some careful inspection and trial and error, it appears that the subarray defined by the contiguous elements in
index values 3, 4, 5, and 6 provides the largest possible sum of subarray values.

How can we implement an algorithm as a Java function that returns this largest sum? The signature of this function
would be:

int largestSumBruteForce (int [] data, int size);

Here data holds the array of values and size represents the number of elements in the array to be considered.

We consider and compare two algorithms for solving this problem. The first algorithm that employs a brute -force
approach enumerates every possible subarray, computes its sum, and keeps track of the largest sum to date. We consider
this algorithm first in Listing B.1.

Listing B.1 Brute-Force Algorithm for Computing Largest Sum of Values in Subarray

/** Precondition:
 Data contains at least one positive and one negative value.
 This function returns the largest sum among all subarrays.
*/
int largestSumBruteForce (int [] data, int size) {
 int largest = Integer.MIN_VALUE;
 for (int index1 = 0; index1 < size; index1++)
 for (int index2 = index1; index2 < size; index2++) {
 int sum = 0;
 for (int index3 = index1; index3 <= index2; index3++)
 sum += data[index3];
 if (sum > largest)
 largest = sum;
 }
 return largest;
}

From our previous discussion, since the structure of this code is characterized by three nested loops, the asymptotic
complexity is given by O(n3). This implies that for large n, if one doubles the size of the array, the computational effort
increases by a factor of 8.

A much more clever approach to solving this problem is given in Listing B.2. Since the structure of the clever algorithm
in Listing B.2 is a single loop, its asymptotic complexity is O(n). It should be dramatically clear that a cleverly
constructed algorithm can be significantly more efficient than one that works correctly by brute force.

Page 449

Listing B.2 A Clever Algorithm for Computing Largest Sum of Values in Subarray

int largestSumClever (int [] data, int size) {
 int maxSoFar = Integer.MIN_VALUE;
 int maxEndingHere = 0;
 for (int index = 0; index < size; index++) {
 if (maxEndingHere + data[index] > 0)
 maxEndingHere += data[index];
 else
 maxEndingHere = 0;
 if (maxEndingHere > maxSoFar)
 maxSoFar = maxEndingHere;
 }
 return maxSoFar;
}

As an exercise, the reader should construct a benchmark program that loads an array of increasing size with random
values from -5,000 to 5,000. For each size array the same values should be used for both algorithms. The time it takes to
return the largest value should be computed and output in a table for each of the two algorithms.

Page 450

Appendix C—
Installing and Using Foundations Classes

C.1—
Installing the Foundations Classes

All the foundations classes and the supporting source files for the book are contained in a single compressed file named
foundations.zip. This file may be down -loaded from the Cambridge University Press Web site at http://www.cup.org.

Extract the entire contents of the foundations.zip file into the directory of your choice. We will refer to this directory as
user-dir in our discussion. A typical choice for user-dir might be C:\CS2notes. The structure of directories and files
created in user-dir by the extraction is shown in Figure C.1.

Chapters 2 and 10, plus the appendices, have no supporting Java files. Each folder has supporting source files for
laboratories and test programs discussed in its corresponding chapter. The entire structure is only 1.8 MB (1.13 MB of
that is in a single file called distinct.txt containing words for use by examples in Chapter 16). File foundations.jar
contains all the compiled class files for the foundations package.

A typical directory structure for the chapter folders is shown in Figure C.2 for Chapters 9 and 14. The docs folder in
Chapter 9 provides javadoc generated documentation for class foundations.Fraction. Each GUI laboratory has
application and user-interface source files plus a batch file that compiles and runs the application. These laboratories
were developed using JBuilder3. The foundations folders contain compilable (do -nothing) source file stubs that are to be
used in specific exercises. The support folders typically contain short test programs that are console-based or source file
stubs to be used in exercises. In some cases batch files are included for compiling and executing the test programs.

C.2—
Using foundations.jar with the Java 2 Platform

In the Java 2 Platform there are several options for setting up and using classes in third-party archives such as
foundations.jar . We describe below the setup method that is simplest and least dependent on other setup/installation
options used in an existing Java installation (including various IDEs). We use the classpath environment variable to
locate and use the foundations classes.

If the classpath enviroment variable does not exist, create it. If it does exist, modify it. You must include the following
as part of a semicolon-separated list of TE

AM
FL
Y

Team-Fly®

Page 451

Figure C.1.
Top-level folders and jar file extracted from foundations.zip .

directories for the classpath variable:

.;user-dir\foundations.jar

The dot (''.") represents the current directory. The second term is the fully qualified path to the Java archive
foundations.jar . Replace user-dir with the actual path. When you invoke the compiler and interpreter for Java, the
foundations classes should now be found.

The above changes to the classpath environment variable require that you have administrator access to the platform on
which Java is installed. If you do not have such access, there is an alternative that will still allow you to use the
foundations classes. This alternative is to use the -classpath switch when invoking the

Figure C.2.
Typical directory structure for laboratories and support files.

Page 452

Figure C.3.
Default Project Properties window in JBuilder.

Java compiler javac.exe and interpreter java.exe. In this case, use the following template for invoking the compiler and
interpreter on SourceFile.java:

javac -classpath ''.;user -dir\foundations.jar" SourceFile.java

java -classpath ".;user-dir\foundations.jar" SourceFile

C.3—
Using foundations.jar with JBuilder

We describe below the details for using the foundations.jar archive with JBuilder3. Most other IDEs also provide a way
to do the same thing. All the labs were designed using JBuilder. You may create a project, include the source files for a
given laboratory, and compile and run the lab from within JBuilder. The advantage to the reader is that the UI
component of each laboratory appears in the Design view of JBuilder exactly as it was constructed. This makes it easy to
modify the design visually.

To include foundations.jar in JBuilder requires that the Project Properties be modified. While it is preferable to modify
the default properties, the following steps may be applied to each project independently as well.

Figure C.4.
Setting the path to archive foundations.jar.

Page 453

Figure C.5.
Library foundations is now available.

1. From the Project menu of JBuilder, open the Default Project Properties window. Select the Paths tab and click the
Libraries button near the bottom. This opens a window titled Available Java Libraries. Typically there are a number of
libraries already in the list. See Figure C.3.

Figure C.6.
Library foundations is now part of the Default Project Properties.

Page 454

2. Click the New button at bottom left in the Available Java libraries window. This adds a new library entry called
untitled. Edit the Name: text field to make the name of the library equal to foundations .

3. Click the browse button to the right of the Class path: text field. This opens a window labeled Edit Library Class
Path. See Figure C.4.

4. Click the Add Archive button in the Edit Library Class Path window. This opens a normal Windows browser that lets
you navigate to your foundations.jar file. After finding your foundations.jar file and clicking OK on the Edit Library
Class Path window, the Available Java libraries window appears as in Figure C.5. In this figure, user-dir is C:\Temp.

5. Close the Available Java libraries window. In the Default Project Properties window click the Add button to add
foundations to the list of libraries. See Figure C.6 for the final result. JBuilder now has access to foundations classes.

Page 455

INDEX

Citations followed by t and f refer to tables and figures respectively.

A

Abstract classes, 13–16

definition of, 13

UML notation, 438

Abstract data types (ADT), 157–169

characteristics of, 157–158

containers as, 170–194

example (complex), 160–163, 161t, 162f

documentation of, 168

implementation of, 163–166

testing of, 166–167, 166f, 167f

example (simple), 158–159

implementation of, 157, 163–166

Abstract Windowing Toolkit (AWT), adapter classes, predefined, 101, 101f

Access modifiers, 60–61

Accessor methods, definition of, 7

ACE (Average comparison effort), 318–319

ActionEvent, handling of, 102–103

with ActionListener , 104–105

with helper class, external, 107–108

with inner class

anonymous, 105–106

named, 106–107

selection of method, 108

Ada, 157

Adapter classes

in AWT, predefined, 101, 101f

in EventListener interfacing, 100, 101f

addAfter command

in DoublyLinkedList, 248

in SinglyLinkedList, 244

addBefore command

in DoublyLinkedList, 248–249

in SinglyLinkedList, 244–245, 245f

add command

getLocation in, 288–289

in Heap, 286–287, 287f, 288–289, 289–290, 294

in LinkedQueue, 210

add method, for binary search trees, 322–323

AddRear command, 234–235

ADT. See Abstract data types

Advertising

of errors, 121, 122

of exceptions, 121–124

Aggregation

strong vs. weak, 65–66, 65f

in UML notation, 440, 441f

Algebraic expressions

evaluation of, 214–216

implementation of, 223–225

laboratory for, 225

postfix form, 214

conversion to, 214–215

algorithm for, 216–218

implementation of, 218–223

Algorithms

complexity of, and speed, 445–449

techniques for building, 135

Aliasing objects, 25–30, 38

APL. See Average path length

Application, top window of, 78–79, 78f, 79f

Array(s), 36–40

copying, 38

object declaration and creation, 37

arraycopy method, 38

ArrayStack, 198–201, 198f

efficiency, vs. LinkedStack, 205–206

Assigning objects, 23–30

Association class, 395–399

data structures and, 175–177

and OrderedDictionary, 396f

in UML notation, 439, 440f

Association for Computer's Machinery (ACM), 4

Asymptotic time complexity, 445

AT&T Bell Labs, 3

Average–case time, 445–446

Average comparison effort (ACE), 318–319

Average path length (APL), in BinaryTree , 271–273, 271f

average recursive method, 145

AVL tree(s), 330–331, 331f, 332f

deletion from, 340–341, 340f–342f

insertion into, 333–340

type 1, 333–334, 335f

type 2, 333–340, 335f, 336f

Page 456

(Cont.)

AVL tree(s)

relationship to other search table implementations, 356, 357f

AWT (abstract windowing toolkit), adapter classes, predefined, 101, 101f

AWTError , 121

AWTEvent, in Java delegation event model, 86–87, 88f

AWT Runtime, 100

B

Backing out, definition of, 137–138

Balance, of search trees, 318–320, 319f

perfect balance, 319–320

Behavioral inheritance, 9, 11, 64

Best-case time, 445–446

Binary expression trees, 273–275, 275f

design of, 275–277, 276f

implementation of, 277–281

interface to, public, 276t

laboratory for, 281–283, 282f

Binary search, 434, 435f

BinarySearchTree , 179, 316–317, 317f

adding elements to, 320, 322–323

commands and queries in, 325–330

for ordered dictionary implementation, 418–419, 418f

performance of, 330

relationship to other search table implementations, 356, 357f

removing elements from, 320–322, 321f, 322f, 323–330

BinaryTree

complete, definition of, 273, 273f

optimally-balanced, definition of, 273, 274f

perfectly-balanced

APL for, 271–272, 272t

definition of, 271–272, 271f

BinaryTreeHeap , 440

implementation of, 289–298, 290f

laboratory for, 298–299, 299f

in PriorityQueue, 308–311, 309f

BinaryTree interface

average path length in, 271–273, 271f

characteristics of, 264–266, 265f

in container hierarchy, 178f, 179, 184–185

traversal of, 266–267

mapping into iterator, 267–270, 268f

binsearch recursive method, 145

Bit operations, low-level, Java support for, 369–371

BitSet class, 369

implementation of, 387–392

Branching, in building algorithms, 135

Bubble sort, 428–429

buildExpressionTree, 277–278, 279f, 281

Button

in design, 96–97

in GUIs, 81

Button click event, processing steps in, 100–102, 102f

C

C (language)

ADTs in, 157

objective, development of, 4

C++ (language)

complexity of, 3–4

development of, 3

Cambridge University website, supporting materials on, 450

use of, 450–452

with JBuilder, 452–454, 453f, 3422f

Chaining, in collision resolution, 378–386

coalesced, 382–386, 383f, 384f

linear, 378, 379–382, 379f

Checked exceptions, vs. unchecked, advertising of, 121–124

Children, in trees, definition of, 263

Class(es)

abstract, 13–16

definition, 13

concrete, definition, 13

construction, 51–62

stack and, 52–53

definition, 7

external (public) view, 7–8

features defining, 55–56

final, 160

foundation

installation of, 450, 451f

use of, 450–452

with JBuilder, 452–454, 453f, 3422f

generic, and interfaces, 19–20

and interfaces, 17–19

internal (private) view, 7

in manipulation data types, 157

messages to, 7–8

naming conventions, 61–62

of object, 5–6

and polymorphic substitution, 8–9

relationships among, 64–66

case study, 66–75

in UML notation, 439–441, 440f, 441f

in UML notation, 437–439, 438f

icon, 437, 438f

name, 437

TE
AM
FL
Y

Team-Fly®

visibility, 437

and user, responsibility and, 51–54

Client vs. server, responsibility and, 51–54

Cloning objects, 28–30

Coalesced chaining, in collision resolution, 378

Collaboration diagrams, 442–444, 443f

Collision, in hashing, 367, 373–375

resolution of, 367–369, 378–386

coalesced chaining, 382–386, 383f, 384f

linear chaining, 379–382, 379f

Collision resolution index (CRI), 382

Page 457

Command(s)

as class-defining feature, 55

definition of, 52

in manipulation data types, 157, 158

naming conventions, 61

Common object request broker architecture (CORBA), packages, 56

Comparable interface

data structures and, 175

in OrderedList, 252

compareTo method, 35–36

Comparison, of strings, 35–36

Complexity of algorithms, and speed, 445–449

Component class

associations with Container , 81–82, 81f

in GUIs, 79 , 80f

ComponentEvent, and subclasses, in Java delegation event model, 87–88, 88f

Composition relationship, 65–66

Concrete classes, definition of, 13

Constructors, 11

as class-defining feature, 55

Container class

as abstract data type, 170–194

associations with Component , 81–82, 81f

classes of, 175–177

definition of, 171

in design, 95–99

hierarchy of, 178–192, 178f

criteria for creation of, 178

top level, 171–173

UML description of, 192, 193f

interface to , 227–228

properties of, 171, 172

simple, 173–175

supporting interface, 175–177

Controller, in MVC concept, 91, 91f

CORBA (common object request broker architecture), packages, 56

Counter class, 63

Cox, Brad, 51–52

Crashes, causes of, 119

CRI (Collision resolution index), 382

D

Data abstraction, 4–5

Data type

abstract, See Abstract data types

definition of, 157

Degree, of tree node, definition of, 263

Delegation, 19

Delegation approach

to MVC, 111–115, 112f

to M -VC, 92–94, 93f

Delegation event model, 86–89

deleteNode, in remove method, 323–324

deleteRightMost, in remove method, 323–324

Dequeue class, 227–240

double-linked, 236, 236f

implementation of, 236–240

implementation of queue container with, 258

implementation of Stack with, 258

singly -linked, 229–230, 230f

implementation of, 230–236

SinglyLinkedList and, protocol, 240–245

Design by contract concept, 51–54

Dictionary

concept of, 395

ordered, 415–418, 417t

unordered, 414

Dictionary interface, 395, 396f, 399–400, 401t

in container hierarchy, 178f, 179, 188–190

implementation of, 402–413, 403f

with Hashtable class, 402–403, 403–409, 403f

with Vector class, 402–403, 403f, 409–413

laboratory for, 413–414, 413f–415f

Direct indexing, definition of, 36–37

DoubleLinkedDequeue, 236, 236f

implementation of, 236–240

Double recursion, tracking of, 144, 144f

DoublyLinkedList

characteristics of, 227

implementation of, 245–249

DoublyLinkedListE , 257

DrawTree , 281, 359–364

E

earlycall recursive method, 145

Eiffel, 3, 51

elements query, 44, 235–236

Encapsulation, 5

Enumeration, 44–47

Environment

in events, definition of, 84

in Java delegation event model, 86, 87f

Equality testing, 30–31

Errors, 119–133. See also Exception(s)

advertising of, 121, 122

classification of, 120–121, 120f

disabling, 119

in older languages, 119 vs. exceptions, seriousness of, 120

Event(s), 82–89

definition of, 82–83

Java delegation event model, 86–89

low-level, AWT, 86–87, 88f

response to, vs. event proper, 82–83

semantic, AWT, 87

steps in, 82–84

terminology, for describing events, 84–85

EventDispatchThread, 88–89

EventHandler , 84–85

in Java delegation event model, 88–89

Event handling, 84–85

implementation of, in GUI design, 99–108

in Java 2, 102–108

Page 458

EventListener , definition of, 85

EventListener interface, 85

implementation of, 99–100, 100f, 101f

in Java delegation event model, 89, 90f

EventObject, 84, 85

in Java delegation event model, 86–88, 88f

EventQueue, 85

in Java delegation event model, 89

Exception(s), 119–133. See also Errors

in abstract data types, 163

advertising of, 121–124

checked, vs. unchecked, 121

classification of, 120–121, 120f

disabling, 119

handling, 119, 126–131

with default vs. custom handler, 131–133

vs. throwing, 127

in older languages, 119

from RuntimeException, advertising of, 122

runtime, handling, 131–133

throwing of, 124–125, 127–131

vs. errors, seriousness of, 120

Exception classes, creation of, 125–126

ExpressionBinaryTree

binary expression, design of, 275–277, 276f

implementation of, 277–281

interface to, public, 276t

laboratory for, 281–283, 282f

Extension, in UML notation, 439, 440f

External nodes

in BinaryTree, 264

in trees, definition, 264

F

factorial recursive method, 145

Field(s)

as class-defining feature, 55

naming conventions, 61

UML notation, 438

Final class, 160

finally clause, 127

findlargest recursive method, 145

Foundation classes

installation of, 450, 451f

use of, 450–452

with JBuilder, 452–454, 453f, 3422f

foundations.zip, 225

Frame objects, in GUIs, 81–82, 81f

FunctionEvaluation class, 223

evaluate query in, 223

in postfix conversion, 218–219

G

Gap sort, 433–434

Generic classes, and interfaces, 19–20

getLast, in removeTop command, 288–289

in Heap, 292

GetLocation, in add, 288–289

getNewLast query, in binary implementation of Heap, 292–293, 292f, 296–297

getParent , in binary implementation of Heap, algorithm for, 290–291, 291f, 296

Going in, definition of, 137–138

Graphical User Interface (GUI)

applications, direction of, 82

basic concepts of, 77–94

classes, association among, 81–82, 81f

components, essential, in, 95–97

layout of, 97–99

containers in, 95–99

definition of, 77

event handling, implementation of, 99–108

exceptions and, 125

graphical part of, 77–82

components (widgets), 79

graphics helper objects in, 79–80, 80f

top window, 77–79

implementation, 95–115

user expectations, 77

Graphics helper objects, in GUIs, 79–81, 80f

GUI. See Graphical User Interface

H

hashCode query function, 367–368, 373

HashDictionary, 403–409

Hash function, perfect, 371–372

theory vs. practice in, 368

Hash index, 367

Hashing, 367

collision in, 367, 373–375

resolution of, 367–369, 378–386

coalesced chaining, 382–386, 383f, 384f

linear chaining, 379–382, 379f

probes in, 369

coalesced chaining, 384–386

linear chaining, 379, 380–382

Hashtable class

collision resolution, chaining in, 378

in Dictionary implementation, 402–403, 403–409, 403f

efficiency of, 414

laboratory for, 413–414, 413f–415f

skeletal structure of, 375–377

speed of, 377–378

Hash tables, 367

load factor of, 368

problems with, 367

size vs. capacity of, 368

and storage requirements, 368

Heap(s), 263

sorted, 285

Heap, 283–299

add command in, algorithm for, 286–287, 287f

characteristics of, 283–286

implementation of

with binary tree, 283–284, 283f, 284f, 286–298, 287f

with Vector, 298

laboratory for, 298–299

Page 459

in PriorityQueue, 307–311, 308f, 309f

removeTop command, algorithm for, 287–288, 289f

Heap interface

in container hierarchy, 178f, 179, 191–192

implementation of, 289–298, 290f

Height-balanced trees, 330–331, 331f, 332f

Height, in trees, definition of, 264

Hoare, Tony, 430

I

Implementation inheritance, 9, 64

Implementation, in UML notation, 439, 440f

ImpOrderedDictionary interface, 416–418, 417t

Import, 58–59

IndexableList , 179, 182–183

implementation of, 249

Indexable list, definition of, 227

Inheritance, 8–13, 64–65

behavioral, 9, 11 , 64

definition of, 8

implementation, 64

Java and, 17

notation for, 14f, 65

and polymorphic substitution, 8–9

Inheritance approach

to MVC, 109–111, 109f

to M -VC, 92 , 92f

Initialization, 22–23

Inner class, in UML notation, 439, 441, 441f

inOrderPrint() recursive method, 150

insertNode , in add method, 322–323

Interaction, among objects, UML notation, 442–444, 443f

Interface(s), 17–19

TE
AM
FL
Y

Team-Fly®

and classes, 19–20

UML notation for, 438

Internal nodes

in BinaryTree, 264

in trees, definition of, 263

''Is a" restraint, in subclasses, 9

"Is kind of" restraint, in subclasses, 9

Iteration

in building algorithms, 135

in mapping traversal of binary tree, 266, 267–270, 268f

recursion as alternative to, 138–142

IterativeQueue

public interface, 303–304

in QueuesPriorityQueue implementation, 303–304,
303f

J

Java

advantages of, 4

development of, 4

and inheritance, 17

top level windows in, 78

version 1.2, packages in, 57 t

version 2

components of, 82

user interfaces in, 82

java.awt.Container class, 78

javadoc, 168

Java foundation classes (JFC). See Foundation classes

Java runtime environment (JRE), 100

JDK, and Java delegation event model, 86–89

JFC (Java foundation classes). See Foundation classes

JRE (Java runtime environment), 100

K

Keys

in Association class, 395–396

in HashDictionary, 404

L

Label, in design, 96

Late binding polymorphism, 13

latecall recursive method, 145

Layout of components, in design, 97–99

Leaf nodes

in BinaryTree, 264

in trees, definition of, 264

length method, 35 t

Level, in trees, definition of, 264

Level order traversals, 285–286

Linear chaining, in collision resolution, 378, 379–382, 379f

word access, 380–382

word insertion, 379–380

LinkageError, 121

LinkedQueue, 208–210

LinkedStack, 201–205, 202f, 203f

efficiency, vs. ArrayStack , 205–206

List

Dequeue implementation, 227–240

doubly-linked, implementation of, 245–249

implementation of, 227

singly -linked, implementation of, 240–245

test suite for, 256–257, 256f

List(s), 227–262

overview of, 227

SkipList, 348–349, 349f

implementation of, 349–356

ListDictionary , 418f, 419, 422

laboratory for, 422, 423f

List interface

in container hierarchy, 180–184, 182f

characteristics of, 178f, 179

in Dequeue, 227–229

indexable, 179, 182–183

positionable, 179, 183–184

definition of, 227

implementation of, 240–249

implementation of Stack with, 258–259

ListLabUI, 256–257, 256f

List, ordered, implementation of, 252–256

Load factor of hash tables, 368

Page 460

M

makeEmpty command, 205, 234

Maximum level of search tree, 318

Memory leakage, in Java vs. C++, 4

Message

cascading of, 6

purpose of, 6

syntax of, 6

Method(s)

abstract, 14

accessor, definition of, 7

definition of, 6

naming conventions, 61

UML notation, 438

Meyer, Bertrand, 3, 51, 52

Model, in MVC concept, 90, 91f

Modification, of objects, 5

Modula-2, 157

M-VC (model — view, controller)

delegation approach to, 92–94, 93f

inheritance approach to, 92, 92f

MVC (model, view, and controller) design pattern, 89–94

implementation of, 108–115

delegation (beans) approach, 111–115, 112f

inheritance approach, 109–111, 109f

vs. M-VC design, 91 , 91f

myArray.length, 37

N

Naming, conventions of, 61–62

Node(s)

in BinaryTree, 264

internal and external, in trees, 263–264

Null, in BinaryTree , 264

Nygaard, Christian, 3

O

Object

behavior, codification of, 5–6

and class, 5–6

as concept, 5–6

conversion to scalar, 32–33

Object(s), 22–49

aliasing, 25–30, 38

assigning, 23–30

cloning, 28–30

creation of, reference semantics, 22–23

interaction among, UML notation, 442–444, 443f

sending messages to, 5

UML notation, 442, 442f

Objective C, development of, 4

Object-Oriented Programming (OOP) and ADTs, 157

basic principles of, 4–21

history of, 3–4

Object-Oriented Programming :

An Evolutionary Approach (Cox), 51–52

Object-Oriented Software Construction (Meyer), 3, 51, 52

Object Pascal, development of, 4

OOP. See Object-Oriented Programming

OOPSLA (Object-oriented programming, systems, languages, and applications) conference, 4

OrderedDictionary interface, 395, 396f, 415–418, 417f

in container hierarchy, 186–187

implementation of, 418–422, 418f

laboratory for, 422, 423f

OrderedList class, 227

implementation of, 252–256

for ordered dictionary implementation, 418–419, 418f

Ordered list, definition of, 227

P

Packages, 56–60

in Java 1.2, 57t

UML notation, 441, 442f

uses of, 56

Panel, definition of, 79

Panel objects, in GUIs, 81–82, 81f

Parent(s), in trees, definition of, 263

parent field, in Container class, 81

Parnas, David, 157

Pascal, ADTs in, 157

pathLength, in trees, definition of, 264

PBBT. See Perfectly balanced binary tree

PerfectHash class, 371–372. See also Hashing

theory vs. practice in, 368

Perfectly balanced binary tree (PBBT)

APL for, 271–272, 272t

definition of, 271, 271f

permute recursive method, 150

Polymorphic substitution, 8–9

inheritance and, 64

in List, 257

Polymorphism, late binding, 13

pop command, 52–53, 197, 198, 205

PositionableList, 179, 183–184

definition of, 227

implementation of, 240–249

implementation of queue container with, 258

implementation of Stack with, 258–259

Postconditions, 52–53

Postfix form of algebraic expressions, 214

conversion to, 214–215

algorithm for, 216–218

implementation of, 218–223

PQIterator, in QueuesPriorityQueue implementation, 304–305

Preconditions, 52–54

Primes class, 369–371

PriorityQueue, 263, 300–311

characteristics of, 300–302

vs. Queue, 300

implementation of

with Heap, 307–311, 308f, 309f

using vector of queues, 302–307, 302f

Page 461

laboratory for, 311, 311f, 312f

public interface, 301t

PriorityQueue interface, in container hierarchy, 188

Private access modifiers, 61

Private methods, as class-defining feature, 55

Probe(s), number of, in hashing, 369

coalesced chaining, 384–386

linear chaining, 379, 380–382

PropertyChangeEvent, 93, 94

Protected access modifiers, 61

Public access modifiers, 60–61

Pugh, W., 348–349, 349f

push command, 52–53, 197, 198, 205

Q

Queries

as class-defining feature, 55

definition of, 52

in manipulation data types, 157, 158

naming conventions, 61–62

Queue(s)

characteristics of, 207

LinkedQueue, 208–210

priority, see PriorityQueue

testing of, 210–211, 211f

Queue container

characteristics of, 174–175

implementation of, with internal Dequeue or PositionableList, 258

QueuesPriorityQueue class, 302–307,
303f

Quick sort, 430–432, 430f

R

Random class, 57–59

readLine() method , 121

Recursion, 135–152

complexity of, 142–144

management of, 144–145

definition of, 135

degree of recursion, and recursion complexity, 143–144

double

example, 150–152

tracking of, 144–145, 144f

iteration as alternative to, 138–139

properties, essential, 136–137

recursive statements, relative position, and recursion complexity, 144

single, example, 145–150

steps in executing, 138, 139f

terminology, 137–138

Recursive level, 137

Reference semantics, and object creation, 22–23

Reference types, 31

for scalar types, 31–32

Relationships among classes, in UML notation, 439–441, 440f,
441f

remove command, in LinkedQueue, 210

remove method, for binary search trees, 322–323

removeTop command, in Heap

algorithm for, 287–288, 289f

getLast in, 288–289, 292

replicator recursive method, 145

Return, of messages from objects, 5

Reusable class DrawTree , 359–364

rightMost , in remove method, 323–324

Root of tree, definition of, 263

Rotation of trees, 331–333, 332f, 333f, 334f

RuntimeException, 121

catching, 131–133

S

Scalar, conversion to object, 32–33

Scalar types, 31

wrappers, 31–32

SearchTable

characteristics of, 315–316

implementations of, 356

SearchTable interface, 188, 227

in container hierarchy, 178f, 179, 185–188, 185f

implementation of, 252

Search tree(s), 315–364

AVL, 330–331, 331f, 332f

deletion from, 340–341, 340f–342f

insertion into

type 1, 333–334, 335f

type 2, 333–340, 335f, 336f

relationship to other search table implementations, 356, 357f

balance of, 318–320, 319f

perfect balance, 319–320

binary, 316–317, 317f

adding element to, 320

add method for, 322–323

commands and queries in, 325–330

performance of, 330

relationship to other search table implementations, 356, 357f

remove method, 323–330

remove method for, 322–323

removing elements from, 320–322, 321f, 322f

searching for an element in, 317–318

height-balanced, 330–331, 331f, 332f

laboratory for, 356–359, 357f–360f

TE
AM
FL
Y

Team-Fly®

maximum level of, 318

rotation of, 331–333, 332f, 333f, 334f

splay, 342, 343f, 344f

implementation of, 344–348

relationship to other search table implementations, 356, 357f

SearchTreeNode class, 267–270, 268f

in ExpressionBinaryTree, 277

SecurityException, 123

Selection sort, 427–428

Sentinel parameters, in recursions, 136–137, 138

Separate chaining, in collision resolution, 378

Page 462

Sequence diagrams, 442–443, 443f

Serializability, in class construction, 171–172

Set class, implementation of, 387–392

Set interface, 386–387

in container hierarchy, 178f, 179, 190–191

Siblings, in trees, definition of, 263

Sieve of Eratosthenes, 369, 370

Simula, 3

SinglyLinkedDequeue, 229–230, 230f

implementation of, 230–236

SinglyLinkedList

characteristics of, 227

and Dequeue, protocol, 240–245

implementation of, 240–245

SinglyLinkedListE , 257

SkipList, 348–349, 349f

implementation of, 349–356

Smalltalk, 3, 90, 157

development of, 4

Sorting, 427–435

binary search, 434, 435f

bubble sort, 428–429

efficient algorithms, 430–434

gap sort, 433–434

laboratory for, 434, 435f

quick sort, 430–432, 430f

selection sort, 427–428

simple and inefficient algorithms for, 427–429

Sort Lab, 434, 435f

Source(s)

of events, definition of, 84

in Java delegation event model, 86, 87f

Source files, supporting

location of, 450

use of, 450–452

with JBuilder, 452–454, 453f, 3422f

Speed of execution, and complexity of algorithms, 445–449

SplayTree, 342, 343f, 344f

implementation of, 344–348

relationship to other search table implementations, 356, 357f

Stack(s), 197–206

ArrayStack, 198–201, 198f

efficiency, vs. LinkedStack, 205–206

characteristics of, 197–198

LinkedStack, 201–205, 202f, 203f

efficiency, vs. ArrayStack , 205–206

testing of, 210–211, 211f

Stack

and algebraic expression evaluation, 214–216

application of, 214–226

and class construction, 52–53

definition of, 52

implementation of, with internal Dequeue or PositionableList, 258–259

Stack container, characteristics of, 173–174

StackOverflowException, 136

Static dimensioning, definition of, 36–37

stop method, 121

StringBuffer objects, 36

conversion to String object, 36

StringIndexOutOfBoundsException, 132

Strings, 34–36

comparisons, 35–36

conversion of stringBuffer objects to, 36

methods, 35t

Strong aggregation, 65

notation for, 65 , 65f

Subclasses, 8–9

''is a" restraint, 9

Substitution, polymorphic, 8–9

inheritance and, 64

in List, 257

substring method, 35t

Subtrees, 264–265

Sun Microsystems, 4

Supporting source files

location of, 450

use of, 450–452

with JBuilder, 452–454, 453f, 3422f

T

TextField objects

in design, 96–97

in GUIs, 82

ThreadDeath, 121

Throwable class, 120–121, 120f

Throwing an exception, 124–125, 127–131

vs. error, seriousness of, 120

toLowerCase method, 35t

Top-level window, in design, 95–96

top query, 54 , 197, 198

Top window of application, 78–79, 78f, 79f

toString method, 11, 36

ToUpperCase method, 35t

Traversals, level order, 285–286

traverseLevels query, in Heap, 298

Tree(s), 263–283, 264f. See also Search trees

binary expression, 273–275, 275f

design of, 275–277, 276f

implementation of, 277–281

interface to, public, 276t

laboratory for, 281–283, 282f

BinaryTree

average path length in, 271–273, 271f

characteristics of, 264–266, 265f

complete, definition of, 273, 273f

optimally-balanced, definition of, 273, 274f

perfectly-balanced

APL for, 271–272, 272t

definition of, 271–272, 271f

traversal of, 266–267

mapping into iterator, 267–270, 268f

Page 463

structure of, 263, 264f

terminology of, 263–264

TreeDictionary, 418f, 419–422

laboratory for, 422, 423f

TreeInorderIterator, 268–270, 268f

TreeIterator class , 267–270, 268f

trim method, 35 t

try/catch blocks, 126

U

UML. See Unified Modeling Language

Unchecked exceptions, vs. checked, advertising of, 121–124

Unified Modeling Language (UML)

Container class hierarchy in, 192, 193f

development of, 4

notation, 437–444

abstract classes, 438

aggregation, in UML notation, 440, 441f

association, 439, 440f

classes, 437–439, 438f

extension, 439, 440f

field(s), 438

implementation, 439, 440f

inner class, 439, 441, 441f

interface classes, 438

methods, 438

objects, 442, 442f

interaction among, 442–444, 443f

packages, 441, 442f

relationships among classes, 439–441, 440f, 441f

of use (of class by class), 439–440, 440f

Unwrapping, 32–33

Use (of class by class), in UML notation, 439–440, 440f

User, vs. producer, responsibility and, 51–54

V

Values

in Association class, 395–396

in HashDictionary, 404

Vector class, 40–44

in Dictionary implementation, 402–403, 403f, 409–413

efficiency of, 414

laboratory for, 413–414, 413f–415f

VectorHeap class, 298

laboratory for, 298–299, 299f

VectorList class, 249–252

View, in MVC concept, 90–91, 91f

VirtualMachineError, 121

W

Weak (reference) aggregation, 65–66

notation for, 66

Widgets, 79

Wildcard ''∗", 59

WindowEvent, handling of, with anonymous adapter class, 103–
104

Window, top, of application, 78–79, 78f, 79f

Worst-case time, 445–446

Wrappers, for scalar types, 31–32

Wrapping, 32–33

X

Xerox PARC (Palo Alto Research Center), 3

	sample.pdf
	sterling.com
	Welcome to Sterling Software

